MongoDB cookbook: Indexes

MongoDB cookbook: Indexes

Indexes are crucial for the efficient execution of queries and aggregations in MongoDB. Without indexes, MongoDB must perform a collection scan, i.e., scan every document in a collection.

If a write operation modifies an indexed field, MongoDB updates all indexes that have the modified field as a key. So, be careful while choosing indexes.

Types Of Indexes

ref:
https://docs.mongodb.com/manual/indexes/
https://docs.mongodb.com/manual/applications/indexes/

Single Field Index

For a single field index and sort operations, the sort order (i.e. ascending or descending) of the index key doesn't matter. With index intersetion, single field indexs could be powerful.

ref:
https://docs.mongodb.com/manual/core/index-single/

Compound Index

The order of the fields listed in a compound index is very important.

ref:
https://docs.mongodb.com/manual/core/index-compound/
https://docs.mongodb.com/manual/tutorial/create-indexes-to-support-queries/

TTL Index

When the TTL thread is active, a background thread in mongod reads the values in the index and removes expired documents from the collection. You will see delete operations in the output of db.currentOp().

TTL indexes are a single-field indexes. Compound indexes do not support TTL and ignore the expireAfterSeconds option.

import datetime

class JournalEntry(db.Document):
    users = db.ListField(db.ReferenceField('User'))
    event = db.StringField()
    context = db.DynamicField()
    timestamp = db.DateTimeField(default=datetime.datetime.utcnow)

    meta = {
        'index_background': True,
        'indexes': [
            {
                'fields': ['timestamp'],
                'cls': False,
                'expireAfterSeconds': int(datetime.timedelta(days=90).total_seconds()),
            },
        ],
    }

ref:
https://docs.mongodb.com/manual/core/index-ttl/

Index Intersection

MongoDB can use multiple single field indexes to fulfill queries.

db.orders.createIndex({tags: 1});
db.orders.createIndex({key: { created_at: -1 }, background: true});

db.orders.find({item: 'abc123', qty: {$gt: 15}});

ref:
https://docs.mongodb.com/manual/core/index-intersection/

Covered Queries

ref:
https://docs.mongodb.com/manual/core/query-optimization/#read-operations-covered-query

Index Limits

The size of an index entry for an indexed field must be less than 1024 bytes. For instance, an arbitrary URL field can easily exceed 1024 bytes.

MongoDB will not insert into an indexed collection any document with an indexed field whose corresponding index entry would exceed the index key limit, and instead, will return an error; Updates to the indexed field will error if the updated value causes the index entry to exceed the indexkey limit.

ref:
https://docs.mongodb.com/manual/reference/limits/#indexes

List Indexes

db.message.getIndexes()

// show collection statistics
db.message.stats()
db.message.stats().indexSizes

// scale defaults to 1 to return size data in bytes
// 1024 * 1024 means MB
db.getCollection('message').stats({'scale': 1024 * 1024}).indexSizes

ref:
https://docs.mongodb.com/manual/tutorial/manage-indexes/

Add Indexes

TODO:
It seems like creating indexes on empty collection, even with background will cause DB latency.

An index which contains array fields might consume a lot of disk space.

db.message.createIndex({
    '_cls': 1,
    'sender': 1,
    'posted_at': 1
}, {'background': true, 'sparse': true})

db.message.createIndex({
    '_cls': 1,
    'includes': 1,
    'posted_at': 1
}, {'background': true, 'sparse': true})

db.getCollection('message').find({
    '$or': [
        // sent by cp
        {
            '_cls': 'Message.ChatMessage',
            'sender': ObjectId('582ee32a5b9c861c87dc297e'),
            'posted_at': {
                '$gte': ISODate('2018-01-08T00:00:00.000Z'),
                '$lt': ISODate('2018-01-14T00:00:00.000Z')
            }
        },
        // sent by payer
        {
            '_cls': 'Message.GiftMessage',
            'includes': ObjectId('582ee32a5b9c861c87dc297e'),
            'posted_at': {
                '$gte': ISODate('2018-01-08T00:00:00.000Z'),
                '$lt': ISODate('2018-01-14T00:00:00.000Z')
            }
        }
    ]
})
import pymongo
from your_app.models import YourModel

YourModel._get_collection().create_index(
    [
        ('users', pymongo.ASCENDING),
        ('timestamp', pymongo.DESCENDING),
    ], 
    background=True,
    partialFilterExpression={'timestamp': {'$exists': True}},
)

ref:
http://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.create_index

You can't index two arrays together, in this example: includes and unlocks.

// it doesn't work
db.message.createIndex({
    '_cls': 1,
    'sender': 1,
    'includes': 1,
    'unlocks': 1
}, {'background': true, 'sparse': true})

The Order Of Fields of Compound Indexes

The order of fields in an index matters, you must consider Index Cardinality and Selectivity. Instead, the order of fields in a find() query or $match in an aggregation doesn't affect whether it can use an index or not.

The order of fields in a compound index should be:

  • First, fields on which you will query for exact values.
  • Second, fields on which you will sort.
  • Finally, fields on which you will query for a range of values.

ref:
https://docs.mongodb.com/manual/core/index-compound/#prefixes
https://emptysqua.re/blog/optimizing-mongodb-compound-indexes/
https://blog.mlab.com/2012/06/cardinal-ins/
https://stackoverflow.com/questions/33545339/how-does-the-order-of-compound-indexes-matter-in-mongodb-performance-wise
https://stackoverflow.com/questions/5245737/mongodb-indexes-order-and-query-order-must-match

Partial Indexes v.s. Sparse Indexes

Partial indexes should be preferred over sparse indexes. However, partial indexes only support a very small set of filter operators:

  • $exists
  • $eq or field: value
  • $gt, $gte, $lt, $lte
  • $type
  • $and

If you use 'partialFilterExpression': {'includes': {'$exists': true}}, MongoDB also indexes documents whose includes field has null value.

db.collection('message').createIndex(
    {'_cls': 1, 'includes': 1, 'posted_at': 1},
    {'background': true, 'partialFilterExpression': {'includes': {'$exists': true}}}
)

db.collection('message').createIndex(
  {'created_at': -1},
  {'background': true, 'partialFilterExpression': {'created_at': {'$gte': new Date("2018-01-01T16:00:00Z")}}}
)

ref:
https://docs.mongodb.com/manual/core/index-partial/
https://docs.mongodb.com/manual/core/index-sparse/

Create An Index On An Array Field

Querying will certainly be a lot easier in an array field index than a object field.

ref:
https://stackoverflow.com/questions/9589856/mongo-indexing-on-object-arrays-vs-objects

Create An Unique Index On An Array Field

Create an unique index on an array field.

The unique constraint applies to separate documents in the collection. That is, the unique index prevents separate documents from having the same value for the indexed key. It prevents different documents have the same transaction ID but allows one document has multiple identical transaction IDs.

db.getCollection('test1').createIndex({purchases.transaction_id: 1}, {unique: true})

db.getCollection('test1').insert({ _id: 1, purchases: [
    {transaction_id: 'A'}
]})

db.getCollection('test1').insert({ _id: 5, purchases: [
    {transaction_id: 'A'}
]})

db.getCollection('test1').update({ _id: 1}, {$push: {purchases: {transaction_id: 'A'}}})

To prevent one document has multiple identical transaction IDs, We would have atomic updates on single documents.

user = User(id=bson.ObjectId(user_id))
purchase = DirectPurchase(
    user=user,
    timestamp=timestamp,
    transaction_id=transaction_id,
)
MessagePackProduct.objects \
    .filter(id=message_pack_id, __raw__={
        'purchases': {'$not': {'$elemMatch': {
            '_cls': purchase._cls,
            'user': purchase.user.id,
        }}},
    }) \
    .update_one(push__purchases=purchase)

ref:
https://docs.mongodb.com/manual/core/index-unique/#unique-constraint-across-separate-documents

Sort With Indexes

ref:
https://docs.mongodb.com/manual/tutorial/sort-results-with-indexes/

Drop Indexes

db.message.dropIndex({
    'includes': 1
})

db.message.dropIndex({
    '_cls': 1,
    'posted_at': 1,
    'includes': 1
})

Remove Unused Indexes

You can use db.getCollection('COLLECTION_NAME').aggregate({$indexStats: {}}) to find unused indexes, there is a accesses.ops field which indicates the number of operations that have used the index. Also, you might want to remove indexes which have the same prefix.

db.getCollection('message').aggregate(
    {
        '$indexStats': {}
    },
    {
        '$match': {
            'accesses.ops': {'$gt': 0}
        }
    }
);

Result:

{
    "name" : "_cls_1_sender_1_posted_at_1",
    "key" : {
        "_cls" : 1,
        "sender" : 1,
        "posted_at" : 1
    },
    "host" : "a6ea11893605:27017",
    "accesses" : {
        "ops" : 3,
        "since" : "2018-01-26T07:04:51.137Z"
    }
}

ref:
https://blog.mlab.com/2017/01/using-mongodb-indexstats-to-identify-and-remove-unused-indexes/
https://scalegrid.io/blog/how-to-find-unused-indexes-in-mongodb/

Profiling

// enable
db.setProfilingLevel(2)

// disable
db.setProfilingLevel(0)

// see profiling data after you issues some queries
db.system.profile.find().limit(10).sort( { ts : -1 } ).pretty()

// delete profiling data
db.system.profile.drop()

Query Explain

There are both collection.find().explain() and collection.explain().find(). It's recommended to use collection.find().explain('executionStats') for getting more information, like total documents examined.

db.getCollection('message').find({
    '$or': [
        // sent by cp
        {
            '_cls': 'Message.ChatMessage',
            'sender': ObjectId('582ee32a5b9c861c87dc297e'),
            'posted_at': {
                '$gte': ISODate('2018-01-08T00:00:00.000Z'),
                '$lt': ISODate('2018-01-14T00:00:00.000Z')
            }
        },
        {
            '_cls': 'Message',
            'sender': ObjectId('582ee32a5b9c861c87dc297e'),
            'posted_at': {
                '$gte': ISODate('2018-01-08T00:00:00.000Z'),
                '$lt': ISODate('2018-01-14T00:00:00.000Z')
            }
        },
        // sent by payer
        {
            '_cls': 'Message.ChatMessage',
            'includes': ObjectId('582ee32a5b9c861c87dc297e'),
            'posted_at': {
                '$gte': ISODate('2018-01-08T00:00:00.000Z'),
                '$lt': ISODate('2018-01-14T00:00:00.000Z')
            }
        },
        {
            '_cls': 'Message.ReplyMessage',
            'includes': ObjectId('582ee32a5b9c861c87dc297e'),
            'posted_at': {
                '$gte': ISODate('2018-01-08T00:00:00.000Z'),
                '$lt': ISODate('2018-01-14T00:00:00.000Z')
            }
        },
        {
            '_cls': 'Message.GiftMessage',
            'includes': ObjectId('582ee32a5b9c861c87dc297e'),
            'posted_at': {
                '$gte': ISODate('2018-01-08T00:00:00.000Z'),
                '$lt': ISODate('2018-01-14T00:00:00.000Z')
            }
        }
    ]
})
// .explain()
// .explain('allPlansExecution')
.explain('executionStats')

ref:
https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/reference/method/db.collection.explain/#db.collection.explain

You could also explain a .update() query. However, .updateMany() and .updateOne() don't support .explain().

db.getCollection('user').explain().update(
    {'follows.user': ObjectId("57985b784af4124063f090d3")},
    {'$set': {'created_at': ISODate('2018-01-01 00:00:00.000Z')}},
    {'multi': true}
)

Some important fields to look at in the result of explain():

  • executionStats.totalKeysExamined
  • executionStats.totalDocsExamined
  • queryPlanner.winningPlan.stage
  • queryPlanner.winningPlan.inputStage.stage
  • queryPlanner.winningPlan.inputStage.indexName
  • queryPlanner.winningPlan.inputStage.direction

Possible values of stage:

  • COLLSCAN: scanning the entire collection
  • IXSCAN: scanning index keys
  • FETCH: retrieving documents
  • SHARD_MERGE: merging results from shards

ref:
https://docs.mongodb.com/manual/reference/explain-results/

Aggregation Explain

db.getCollection('message').explain().aggregate()

ref:
https://stackoverflow.com/questions/12702080/mongodb-explain-for-aggregation-framework
https://docs.mongodb.com/manual/reference/method/db.collection.explain/

If $project, $unwind, or $group occur prior to the $sort operation, $sort cannot use any indexes. Additionally, $sort can only use fields defined in previous $project stage.

Basically, you could just consider the $match part when you want to create new indexes.

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/sort/#sort-operator-and-performance

MongoEngine

_cls creation on indexes is automatically included if allow_inheritance is on. If you want to disable, set kwarg cls: False.

ref:
http://docs.mongoengine.org/guide/defining-documents.html#indexes

MongoDB cookbook: Queries and Aggregations

MongoDB cookbook: Queries and Aggregations

Frequently accessed items are cached in memory, so that MongoDB can provide optimal response time.

MongoDB Shell in JavaScript

Administration

db.currentOp();

// slow queries
db.currentOp({
    "active": true,
    "secs_running": {"$gt" : 3},
    "ns": /^test\./
});

// queries not using any index
db.adminCommand({ 
    "currentOp": true,
    "op": "query", 
    "planSummary": "COLLSCAN"
});

// operations with high numYields
db.adminCommand({ 
    "currentOp": true, 
    "ns": /^test\./, 
    "numYields": {"$gte": 100} 
}) 

db.serverStatus().connections
{
    "current" : 269,
    "available" : 838591,
    "totalCreated" : 417342
}

ref:
https://docs.mongodb.com/manual/reference/method/db.currentOp/
https://hackernoon.com/mongodb-currentop-18fe2f9dbd68
http://www.mongoing.com/archives/6246

BSON Types

ref:
https://docs.mongodb.com/manual/reference/bson-types/

Check If A Document Exists

It is significantly faster to use find() + limit() because findOne() will always read + return the document if it exists. find() just returns a cursor (or not) and only reads the data if you iterate through the cursor.

db.getCollection('message').find({_id: ObjectId("585836504b287b5022a3ae26", delivered: false)}, {_id: 1}).limit(1)

ref:
https://stackoverflow.com/questions/8389811/how-to-query-mongodb-to-test-if-an-item-exists
https://blog.serverdensity.com/checking-if-a-document-exists-mongodb-slow-findone-vs-find/

Find Documents

db.getCollection('user').find({username: 'nanababy520'})

db.getCollection('message').find({_id: ObjectId("5a6383b8d93d7a3fadf75af3")})

db.getCollection('message').find({_cls: 'Message'}).sort({posted_at: -1})

db.getCollection('message').find({sender: ObjectId("57aace67ac08e72acc3b265f"), pricing: {$ne: 0}})

db.getCollection('message').find({
    sender: ObjectId("5ac0f56038cfff013a123d85"),
    created_at: {
        $gte: ISODate('2018-04-21 12:00:00Z'),
        $lte: ISODate('2018-04-21 13:00:00Z')
    }
})
.sort({created_at: -1})

Find Documents With Regular Expression

db.getCollection('user').find({'username': /vicky/})

ref:
https://docs.mongodb.com/manual/reference/operator/query/regex/

Find Documents With An Array Field

  • $in: [...] means "intersection" or "any element in"
  • $all: [...] means "subset" or "contain"
  • $elemMatch: {...} means "any element match"
  • $not: {$elemMatch: {$nin: [...]}} means "subset" or "in"

The last one roughly means not any([False, False, False, False]) where each False is indicating if the item is not in in [...].

ref:
https://stackoverflow.com/questions/12223465/mongodb-query-subset-of-an-array

db.getCollection('message').find({includes: ObjectId("5a4bb448af9c462c610d0cc7")})

db.getCollection('user').find({gender: 'F', tags: 'promoted'})
db.getCollection('user').find({gender: 'F', 'tags.1': {$exists: true}})

ref:
https://docs.mongodb.com/manual/reference/operator/query/exists/#exists-true

Find Documents With An Array Field Of Embedded Documents

Usually, you could use $elemMatch.

{'the_array_field': {'$elemMatch': {
    'a_field_of_each_element': {'$lte': now},
    'another_field_of_each_element': 123
}}}
db.getCollection('message').find({
    unlocks: {
        $elemMatch: {
            _cls: 'PointsUnlock',
            user: ObjectId("57f662e727a79d07993faec5")
        }
    }
})

db.getCollection('feature.shop.product').find({
    purchases: {
        $elemMatch: {
            _cls: 'Purchase'
        }
    }
})

db.getCollection('feature.shop.product').find({
    '_id': 'prod_CWlSTXBEU4mhEu',
    'purchases': {'$not': {'$elemMatch': {
        '_cls': 'DirectPurchase',
        'user': ObjectId("58b61d9094ab56f912ba10a5")
    }}},
})

ref:
https://docs.mongodb.com/manual/reference/operator/query/elemMatch/

Find Documents With Existence Of Fields Or Values

  • .find({'field': {'$exists': true}}): the field exists
  • .find({'field': {'$exists': false}}): the field does not exist
  • .find({'field': {'$type': 10}}): the field exists with a null value
  • .find({'field': null}): the field exists with a null value or the field does not exist
  • .find({'field': {'$ne': null}}): the field exists and the value is not null
  • .find({'array_field': {'$in': [null, []]}})
db.test.insert({'num': 1, 'check': 'value'})
db.test.insert({'num': 2, 'check': null})
db.test.insert({'num': 3})

db.test.find({});

db.test.find({'check': {'$exists': true}})
// return 1 and 2

db.test.find({'check': {'$exists': false}})
// return 3

db.test.find({'check': {'$type': 10}});
// return 2

db.test.find({'check': null})
// return 2 and 3

db.test.find({'check': {'$ne': null}});
// return 1

ref:
https://stackoverflow.com/questions/4057196/how-do-you-query-this-in-mongo-is-not-null
https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Find Documents Where An Array Field Does Not Contain A Certain Value

db.getCollection('user').update({_id: ObjectId("579994ac61ff217f96a585d9"), tags: {$ne: 'tag_to_add'}}, {$push: {tags: 'tag_to_add'}})

db.getCollection('user').update({_id: ObjectId("579994ac61ff217f96a585d9"), tags: {$nin: ['tag_to_add']}}, {$push: {tags: 'tag_to_add'}})

ref:
https://stackoverflow.com/questions/16221599/find-documents-with-arrays-not-containing-a-document-with-a-particular-field-val

Find Documents Where An Array Field Is Not Empty

db.getCollection('message').find({unlocks: {$exists: true}})

ref:
https://stackoverflow.com/questions/14789684/find-mongodb-records-where-array-field-is-not-empty

Find Documents Where An Array Field's Size Is Greater Than 1

db.getCollection('user.inbox').find({
    'messages.0': {'$exists': true}
})

db.getCollection('message').find({
    '_cls': 'Message',
    'unlocks.10': {'$exists': true}
}).sort({'posted_at': -1})

db.getCollection('message').find({
    '_cls': 'Message.ChatMessage',
    'sender': ObjectId("582ee32a5b9c861c87dc297e"),
    'unlocks': {'$exists': true, '$not': {'$size': 0}}
})

ref:
https://stackoverflow.com/questions/7811163/query-for-documents-where-array-size-is-greater-than-1/15224544

Find Documents With Computed Values Using $expr

For instance, compare 2 fields from a single document in a find() query.

db.getCollection('user').find({
    $expr: {
        $eq: [{$size: '$follows'}, {$size: '$blocks'}]
    }
})

ref:
https://thecodebarbarian.com/a-nodejs-perspective-on-mongodb-36-lookup-expr
https://dzone.com/articles/expressive-query-language-in-mongodb-36-2

Project A Subset Of An Array Field With $filter

A sample document:

{
    "_id" : "message_unlock_pricing",
    "seed" : 42,
    "distributions" : {
        "a" : 0.5,
        "b" : 0.5
    },
    "whitelist" : [ 
        {
            "_id" : ObjectId("57dd071dd20fc40c0cbed6b7"),
            "variation" : "a"
        }, 
        {
            "_id" : ObjectId("5b1173a1487fbe2b2e9bba04"),
            "variation" : "b"
        }, 
        {
            "_id" : ObjectId("5a66d5c2af9c462c617ce552"),
            "variation" : "b"
        }
    ]
}
var now = new Date();

db.getCollection('feature.ab.experiment').aggregate([
    {'$project': {
        '_id': 1,
        'seed': 1,
        'distributions': 1,
        'whitelist': {
            '$filter': {
               'input': {'$ifNull': ["$whitelist", []]},
               'as': "user",
               'cond': {'$eq': ['$$user._id', ObjectId("5a66d5c2af9c462c617ce552")]}
            }
         }
    }},
    {'$unwind': {
        'path': '$whitelist',
        'preserveNullAndEmptyArrays': true
    }}
])

ref:
https://stackoverflow.com/questions/42607221/mongodb-aggregation-project-check-if-array-contains

Insert Documents

db.getCollection('feature.launch').insert({
    'url': '//example.com/launchs/5a06b88aaf9c462c6146ce12.jpg',
    'user': {
        'id': ObjectId("5a06b88aaf9c462c6146ce12"),
        'username': 'luke0804',
        'tags': ["gender:male"]
    }
})

db.getCollection('feature.launch').insert({
    'url': '//example.com/launchs/57c16f5bb811055b66d8ef46.jpg',
    'user': {
        'id': ObjectId("57c16f5bb811055b66d8ef46"),
        'username': 'riva',
        'tags': ["gender:female"]
    }
})

Update Within A For Loop

var oldTags = ['famous', 'newstar', 'featured', 'western', 'recommended', 'popular'];
oldTags.forEach(function(tag) {
    db.getCollection('user').updateMany({tags: tag}, {$addToSet: {tags: 'badge:' + tag}});
});

Update With Conditions Of Field Values

You could update the value of the field to a specified value if the specified value is less than or greater than the current value of the field. The $min and $max operators can compare values of different types.

Only set posted_at to current timestamp if its current value is None or absent.

Post.objects.update_one(
    {
        '_id': bson.ObjectId(post_id),
        'media.0': {'$exists': True},
        'title': {'$ne': None},
        'location': {'$ne': None},
        'gender': {'$ne': None},
        'pricing': {'$ne': None},
    },
    {
        '$min': {'posted_at': utils.utcnow()},
    },
)

ref:
https://docs.mongodb.com/manual/reference/operator/update/min/
https://docs.mongodb.com/manual/reference/operator/update/max/

Update An Array Field

Array update operators:

  • $: Acts as a placeholder to update the first element in an array for documents that matches the query condition.
  • $[]: Acts as a placeholder to update all elements in an array for documents that match the query condition.
  • $[<identifier>]: Acts as a placeholder to update elements in an array that match the arrayFilters condition.
  • $addToSet: Adds elements to an array only if they do not already exist in the set.
  • $push: Adds an item to an array.
  • $pop: Removes the first or last item of an array.
  • $pull: Removes all array elements that match a specified query.
  • $pullAll: Removes all matching values from an array.

ref:
https://docs.mongodb.com/manual/reference/operator/update-array/
http://docs.mongoengine.org/guide/querying.html#atomic-updates
http://thecodebarbarian.com/a-nodejs-perspective-on-mongodb-36-array-filters.html

Add an element in an array field.

user_id = '582ee32a5b9c861c87dc297e'
tag = 'my_tag'

updated = User.objects \
    .filter(id=user_id, tags__ne=tag) \
    .update_one(push__tags=tag)

updated = User.objects \
    .filter(id=user_id) \
    .update_one(add_to_set__schedules={
        'tag': tag,
         'nbf': datetime.datetime(2018, 6, 4, 0, 0),
        'exp': datetime.datetime(2019, 5, 1, 0, 0),
    })

Insert an element into an array at a certain position.

slot = 2
Post.objects.filter(id=post_id, media__id__ne=media_id).update_one(__raw__={
    '$push': {
        'media': {
            '$each': [{'id': bson.ObjectId(media_id)}],
            '$position': slot,
        }
    }
})

ref:
https://docs.mongodb.com/manual/reference/operator/update/position/
http://docs.mongoengine.org/guide/querying.html#querying-lists

Remove elements in an array field. It is also worth noting that update(pull__abc=xyz) always returns 1.

user_id = '582ee32a5b9c861c87dc297e'
tag = 'my_tag'

updated = User.objects \
    .filter(id=user_id) \
    .update_one(pull__tags=tag)

updated = User.objects \
    .filter(id=user_id) \
    .update_one(pull__schedules={'tag': tag})

Remove multiple embedded documents in an array field.

import bson

user_id = '5a66d5c2af9c462c617ce552'
tags = ['valid_tag_1', 'future_tag']

updated_result = User._get_collection().update_one(
    {'_id': bson.ObjectId(user_id)},
    {'$pull': {'schedules': {'tag': {'$in': tags}}}},
)
print(updated_result.raw_result)
# {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

ref:
https://stackoverflow.com/questions/28102691/pullall-while-removing-embedded-objects

db.getCollection('feature.feeds').updateMany(
    {
        'aliases': {'$exists': true},
        'exp': {'$gte': ISODate('2019-03-21T00:00:00.000+08:00')},
        'items': {'$elemMatch': {'username': 'engine'}},
    },
    {
        '$pull': {
            'items': {'username': 'engine'},
        }
    }
);

ref:
https://docs.mongodb.com/manual/reference/operator/update/pull/

You could also use add_to_set to add an item to an array only if it is not in the list, which always returns 1 if filter() matches any document. However, you are able to set full_result=True to get detail updated result.

update_result = User.objects.filter(id=user_id).update_one(
    add_to_set__tags=tag,
    full_result=True,
)
# {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

ref:
http://docs.mongoengine.org/guide/querying.html#atomic-updates

Update a multi-level nested array field. Yes, arrayFilters supports it.

ref:
https://docs.mongodb.com/manual/reference/operator/update/positional-filtered/
https://stackoverflow.com/questions/23577123/updating-a-nested-array-with-mongodb

Update an embedding document in an array field.

MessagePackProduct.objects \
    .filter(id='prod_CR1u34BIpDbHeo', skus__id='sku_CR23rZOTLhYprP') \
    .update(__raw__={
        '$set': {'skus.$': {'id': 'sku_CR23rZOTLhYprP', 'test': 'test'}}
    })

ref:
https://stackoverflow.com/questions/9200399/replacing-embedded-document-in-array-in-mongodb
https://docs.mongodb.com/manual/reference/method/db.collection.update/#db.collection.update

Update specific embedded documents with arrayFilters in an array field.

User data:

{
    "_id" : ObjectId("5a66d5c2af9c462c617ce552"),
    "username" : "gibuloto",
    "tags" : [
        "beta",
        "future_tag",
        "expired_tag"
    ],
    "schedules" : [
        {
            "tag" : "valid_tag",
            "nbf" : ISODate("2018-05-01T16:00:00.000Z"),
            "exp" : ISODate("2020-06-04T16:00:00.000Z")
        },
        {
            "tag" : "future_tag",
            "nbf" : ISODate("2020-01-28T16:00:00.000Z"),
            "exp" : ISODate("2020-12-14T16:00:00.000Z")
        },
        {
            "tag" : "expired_tag",
            "nbf" : ISODate("2016-02-12T16:00:00.000Z"),
            "exp" : ISODate("2016-04-21T16:00:00.000Z")
        }
    ],
}

It is worth noting that <identifier> in $arrayFilters can only contain lowercase alphanumeric characters.

import bson

user_id = '5a66d5c2af9c462c617ce552'
tags = ['from_past_to_future']

updated_result = User._get_collection().update_one(
    {'_id': bson.ObjectId(user_id)},
    {
        '$addToSet': {'tags': {'$each': tags}},
        '$unset': {'schedules.$[schedule].nbf': True},
    },
    array_filters=[{'schedule.tag': {'$in': [tag for tag in tags]}}],
)
print(updated_result.raw_result)
# {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

ref:
https://docs.mongodb.com/master/reference/operator/update/positional-filtered/

Update An Array Field With arrayFilters

You should use arrayFilters as much as possible.

The syntax of arrayFilters would be:

db.collection.update(
   {<query selector>},
   {<update operator>: {'array.$[<identifier>].field': value}},
   {arrayFilters: [{<identifier>: <condition>}}]}
)
Inbox._get_collection().update_many(
    {'messages.id': message_id},
    {'$set': {'messages.$[message].tags': tags}},
    array_filters=[
        {'message.id': message_id},
    ],
)

ref:
https://docs.mongodb.com/manual/reference/operator/update/positional-filtered/

Insert an element into an array field at a certain position.

db.getCollection('feature.forums.post').update(
   { _id: ObjectId("5b3c6a9c8433b15569cae54e") },
   {
     $push: {
        media: {
           $each: [{
                "mimetype" : "image/jpeg",
                "url" : "https://example.com/posts/5adb795b47d057338abe8910.jpg",
                "presets" : {}
            }],
           $position: 1
        }
     }
   }
)

Or use explicit array index $set.

media_id = 'xxx'
media_slot = 0

Post.objects \
    .filter(id=post_id, **{f'media__{media_slot}__id__ne': media_id}) \
    .update_one(__raw__={'$set': {f'media.{media_slot}': {'id': media_id}}})

ref:
https://docs.mongodb.com/manual/reference/operator/update/position/

Set an array field to empty.

db.getCollection('message').update(
    {'tags': 'pack:joycelai-1'},
    {'$set': {'unlocks': []}},
    {'multi': true}
)

db.getCollection('feature.shop.product').update(
    {},
    {'$set': {'purchases': []}},
    {'multi': true}
)

ref:
https://docs.mongodb.com/manual/reference/method/db.collection.update/
https://docs.mongodb.com/manual/reference/operator/update/set/

Remove elements from an array field.

var userId = ObjectId("57985b784af4124063f090d3");

db.getCollection('user').update(
    {'follows.user': userId},
    {'$pull': {'follows': {'user': userId}}},
    {
        'multi': true,
    }
);

db.getCollection('message').update(
    {'_id': {'$in': [
        ObjectId('5aca1ffc4271ab1624787ec4'),
        ObjectId('5aca31ab93ef2936291c3dd4'),
        ObjectId('5aca33d9b5eaef04943c0d0b'),
        ObjectId('5aca34e7a48c543b07fb0a0f'),
        ObjectId('5aca272d93ef296edc1c3dee'),
        ObjectId('5aca342aa48c54306dfb0a21'),
        ObjectId('5aca20756bd01023a8cb02e9')
    ]}},
    {'$pull': {'tags': 'pack:prod_D75YlDMzcCiAw3'}},
    {'multi': true}
);

ref:
https://docs.mongodb.com/manual/reference/operator/update/pull/

Update A Dictionary Field

Set a key/value in a dictionary field.

tutorial.data = {
    "price_per_message": 1200,
    "inbox": []
}

new_inbox = [
    {
        "id": "5af118c598eacb528e8fb8f9",
        "sender": "5a13239eaf9c462c611510fc"
    },
    {
        "id": "5af1117298eacb212a8fb8e9",
        "sender": "5a99554be9a21d5ff38b8ca5"
    }
]
tutorial.update(set__data__inbox=new_inbox)

ref:
https://stackoverflow.com/questions/21158028/updating-a-dictfield-in-mongoengine

Upsert: Update Or Create

You must use upsert=true with uniquely indexed fields. If you don't need the modified document, you should just use update_one(field1=123, field2=456, upsert=True).

Additionally, remember that modify() always reloads the whole object even the original one only loads specific fields with only(). Try to avoid using document.DB_QUERY_METHOD(), and using User.objects.filter().only().modify() or User.objects.filter().update() when it is possible.

tag_schedule = TagSchedule.objects \
    .filter(user=user_id, tag='vip') \
    .modify(
        started_at=started_at,
        ended_at=ended_at,
        upsert=True
    )

user = User.objects \
    .filter(id=user.id, tutorials__buy_diamonds__version=None) \
    .modify(set__tutorials__buy_diamonds__version='v1')

updated = User.objects \
    .filter(user=user_id, tag=tag) \
    .update_one(
        push__followers=new_follower,
    )

ref:
https://docs.mongodb.com/manual/reference/method/db.collection.update/#update-with-unique-indexes
http://docs.mongoengine.org/apireference.html#mongoengine.queryset.QuerySet.modify
http://docs.mongoengine.org/apireference.html#mongoengine.queryset.QuerySet.update_one

Rename A Field

Simply rename a field with $rename.

db.getCollection('user').updateMany(
    {
        'phone_no': {'$exists': true},
        'social.phone-number.uid': {'$exists': false},
    },
    {'$rename': {
        'phone_no': 'social.phone-number.uid',
    }}
);

ref:
https://docs.mongodb.com/manual/reference/operator/update/rename/

Do some extra data converting and rename the field manually.

db.getCollection('user').aggregate([
    {'$match': {
        'twitter.id': {'$exists': true},
        'social.twitter.uid': {'$exists': false},
    }},
    {'$project': {
        'twitter_id': '$twitter.id',
        'twitter_id_str': {'$toString': '$twitter.id'},
    }},
]).forEach(function (document) {
    printjson({
        'id': document._id,
    });

    db.getCollection('user').updateOne(
      {
          'twitter.id': document.twitter_id,
          'social.twitter.uid': {'$exists': false},
      },
      {
          '$unset': {'twitter.id': true},
          '$set': {'social.twitter.uid': document.twitter_id_str}
      }
    )
})

Insert/Replace Large Amount Of Documents

const operations = contracts.map((contract) => {
    // TODO: should create a new contract if there is any change of the contract?
    // use MongoDB transaction to change the new one and old one
    return {
        'replaceOne': {
            'filter': {'settlement_datetime': currentSettlementMonth.toDate(), 'user': contract.user},
            'replacement': contract,
            'upsert': true,
        },
    };
});

db.collection('user.contract').bulkWrite(
    operations,
    {ordered: true},
    (bulkError, result) => {
        if (bulkError) {
            return next(bulkError, null);
        }

        logger.info('Finished importing all contracts');
        return next(null, result);
    },
);

Update Large Numbers Of Documents

Use Bulk.find.arrayFilters() and Bulk.find.update() together.

In Python:

import datetime

expiration_time = datetime.datetime.utcnow() - datetime.timedelta(hours=48)

bulk = Outbox._get_collection().initialize_unordered_bulk_op()

for outbox in Outbox.objects.only('id').filter(messages__posted_at__lt=expiration_time):
    bulk.find({'_id': outbox.id}).update_one({
        '$pull': {'messages': {
            'posted_at': {'$lt': expiration_time},
        }},
    })

try:
    results = bulk.execute()
except pymongo.errors.InvalidOperation as err:
    if str(err) != 'No operations to execute':
        raise err

In JavaScript:

const operations = docs.map((doc) => {
    logger.debug(doc, 'Revenue');

    const operation = {
        'updateOne': {
            'filter': {
                '_id': doc._id,
            },
            'update': {
                '$set': {
                    'tags': doc.contract.tags,
                },
            },
        },
    };
    return operation;
});

db.collection('user.revenue').bulkWrite(
    operations,
    {ordered: false},
    (bulkError, bulkResult) => {
        if (bulkError) {
            return next(bulkError, null);
        }

        logger.info(bulkResult, 'Saved tags');
        return next(null, true);
    },
);
});

ref:
https://docs.mongodb.com/manual/reference/method/Bulk/
https://docs.mongodb.com/manual/reference/method/Bulk.find.arrayFilters/

Of course, you could also update the same document with multiple operations. However, it does not make sense.

from pymongo import UpdateOne
import bson

def _operations():
    if title = payload.get('title'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'title': title}})

    if location = payload.get('location'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'location': location}})      

    if pricing = payload.get('pricing'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'pricing': pricing}})

    if description = payload.get('description'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'description': description}})

    UpdateOne(
        {
            '_id': bson.ObjectId(post_id),
            'media.0': {'$exists': True},
            'title': {'$ne': None},
            'location': {'$ne': None},
            'pricing': {'$ne': None},
            'posted_at': {'$eq': None},
        },
        {'$set': {'posted_at': utils.utcnow()}},
    )

operations = list(_operations())
result = Post._get_collection().bulk_write(operations, ordered=True)
print(result.bulk_api_result)

ref:
https://api.mongodb.com/python/current/examples/bulk.html

Remove items from an array field of documents.

var userId = ObjectId("57a42a779f22bb6bcc434520");

db.getCollection('user').update(
    {'follows.user': userId},
    {'$pull': {'follows': {'user': userId}}},
    {'multi': true}
)

ref:
https://stackoverflow.com/questions/33594397/how-to-update-a-large-number-of-documents-in-mongodb-most-effeciently

Remove Large Numbers Of Documents

in mongo shell:

var bulk = db.getCollection('feature.journal.v2').initializeUnorderedBulkOp()
bulk.find({}).remove()
bulk.execute()

// or

var bulk = db.getCollection('feature.journal.v2').initializeUnorderedBulkOp()
bulk.find({event: 'quest.rewarded'}).remove()
bulk.find({event: 'message.sent'}).remove()
bulk.execute()

ref:
https://docs.mongodb.com/manual/reference/method/Bulk.find.remove/#bulk-find-remove

MongoEngine In Python

ref:
http://docs.mongoengine.org/guide/index.html
http://docs.mongoengine.org/apireference.html

Define Collections

It seems every collection in MongoEngine must have a id field.

ref:
http://docs.mongoengine.org/guide/defining-documents.html

Define A Field With Default EmbeddedDocument

The behavior of setting an EmbeddedDocument class as default works differently with and without only().

class User(ab.models.ABTestingMixin, db.Document):
    class UserSettings(db.EmbeddedDocument):
        reply_price = db.IntField(min_value=0, default=500, required=True)
        preferences = db.ListField(db.StringField())

    email = db.EmailField(max_length=255)
    created_at = db.DateTimeField(default=utils.now)
    last_active = db.DateTimeField(default=utils.now)
    settings = db.EmbeddedDocumentField(UserSettings, default=UserSettings)

If the user does not have settings field in DB, here is the difference.

user = User.objects.get(username='gibuloto')
isinstance(user.settings, User.UserSettings) == True

user = User.objects.only('settings').get(username='gibuloto')
(user.settings is None) == True

user = User.objects.exclude('settings').get(username='gibuloto')
isinstance(user.settings, User.UserSettings) == True

Filter With Raw Queries

post = Post.objects \
    .no_dereference().only('posted_at') \
    .filter(__raw__={
        '_id': bson.ObjectId(post_id),
        'media.0': {'$exists': True},
        'title': {'$ne': None},
        'location': {'$ne': None},
        'gender': {'$ne': None},
        'pricing': {'$ne': None},
    }) \
    .modify(__raw__={'$min': {'posted_at': utils.utcnow()}}, new=True)

print(post.posted_at)

ref:
http://docs.mongoengine.org/guide/querying.html#raw-queries

Check If A Document Exists

Use .exists().

import datetime

now = datetime.datetime.now(datetime.timezone.utc)
if TagSchedule.objects.filter(user=user_id, tag=tag, started_at__gt=now).exists():
    return 'exists'

You have to use __raw__ if the field you want to query is a db.ListField(GenericEmbeddedDocumentField(XXX) field.

if MessagePackProduct.objects.filter(id=message_pack_id, __raw__={'purchases.user': g.user.id}).exists():
    return 'exists'

Upsert: Get Or Create

buy_diamonds = BuyDiamonds.objects.filter(user_id=user.id).upsert_one()

ref:
http://docs.mongoengine.org/apireference.html#mongoengine.queryset.QuerySet.upsert_one

Store Files On GridFS

# models.py
class User(db.Document):
    username = db.StringField()
    image = db.ImageField(collection_name='user.images')
# tasks.py
import bson
import gridfs
import mongoengine

@celery.shared_task(bind=True, ignore_result=True)
def gridfs_save(task, user_id, format='JPEG', raw_data: bytes=None, **kwargs):
    image_id = None

    if raw_data is None:
        user = User.objects.only('image').get(id=user_id)
        if user.image.grid_id:
            image_id, raw_data = user.image.grid_id, user.image.read()

    if not raw_data:
        return

    gf = gridfs.GridFS(mongoengine.connection.get_db(), User.image.collection_name)

    with io.BytesIO(raw_data) as raw_image:
        with Image.open(raw_image) as image:
            image = image.convert('RGB')
            with io.BytesIO() as buffer:
                image.save(buffer, format=format, quality=80, **kwargs)
                buffer.seek(0)
                grid_id = gf.put(buffer, format=format, width=image.width, height=image.height, thumbnail_id=None)

    # NOTE: If function was passed with raw_data, only override if ID is the same as the read
    query = mongoengine.Q(id=user_id)
    if image_id:
        query = query & mongoengine.Q(image=image_id)

    user = User.objects.only('image').filter(query).modify(
        __raw__={'$set': {'image': grid_id}},
        new=False,
    )

    def cleanup():
        # Delete the old image
        if user and user.image:
            yield user.image.grid_id

        # The user image was already changed before the scheduled optimization took place
        # Drop the optimized image
        if user is None and image_id:
            yield image_id

    gridfs_delete.apply_async(kwargs=dict(
        collection=User.image.collection_name,
        grid_ids=list(cleanup()),
    ))

@celery.shared_task(bind=True, ignore_result=True)
def gridfs_delete(task, collection, grid_ids):
    gf = gridfs.GridFS(mongoengine.connection.get_db(), collection)
    for grid_id in grid_ids:
        gf.delete(bson.ObjectId(grid_id))

ref:
http://docs.mongoengine.org/guide/gridfs.html

Store Datetime

MongoDB stores datetimes in UTC.

ref:
https://docs.mongodb.com/manual/reference/method/Date/

2-phase Commit

The easiest way to think about 2-phase commit is idempotency, i.e., if you run a update many times, the results would "be the same": initial -> pending -> applied -> done.

ref:
https://docs.mongodb.com/manual/tutorial/perform-two-phase-commits/

Aggregation Pipeline

  • $match: Filters documents.
  • $project: Modifies document fields.
  • $addFields: Adds or overrides document fields.
  • $group: Groups documents by fields.
  • $lookup: Joins another collection.
  • $replaceRoot: Promotes an embedded document field to the top level and replace all other fields.
  • $unwind: Expanses an array field into multiple documents along with original documents.
  • $facet: Processes multiple pipelines within one stage and output to different fields.

There are special system variables, for instance, $$ROOT, $$REMOVE, $$PRUNE, which you could use in some stages of the aggregation pipeline.

ref:
https://docs.mongodb.com/manual/reference/aggregation-variables/#system-variables

Return Date As Unix Timestamp

import datetime

def stages():
    yield {'$project': {
        'createdAt': {'$floor': {'$divide': [{'$subtract': ['$$created', datetime.datetime.utcfromtimestamp(0)]}, 1000]}},
    }}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://stackoverflow.com/questions/39274311/convert-iso-date-to-timestamp-in-mongo-query

Match Multiple Conditions Which Store In An Array Fields

db.getCollection('feature.promotions').insert({
    "name": "TEST",
    "nbf": ISODate("2018-05-31 16:00:00.000Z"),
    "exp": ISODate("2018-06-30 15:59:00.001Z"),
    "positions": {
        "discover": {
            "urls": [
                "https://example.com/events/2018/jun/event1/banner.html"
            ]
        }
    },
    "requirements" : [
        {
            // users who like women and their app version is greater than v2.21
            "preferences" : [
                "gender:female"
            ],
            "version_major_min": 2.0,
            "version_minor_min": 21.0
        },
        {
            // female CPs
            "tags" : [
                "stats",
                "gender:female"
            ]
        }
    ]
});
import werkzeug

user_agent = werkzeug.UserAgent('hello-world/2.25.1 (iPhone; iOS 11.4.1; Scale/2.00; com.example.app; zh-tw)')
user_preferences = ['gender:female', 'gender:male']
user_tags = ['beta', 'vip']
user_platforms = [user_agent.platform]

def stages():
    now = utils.utcnow()

    yield {'$match': {
        '$and': [
            {'nbf': {'$lte': now}},
            {'exp': {'$gt': now}},
            {'requirements': {'$elemMatch': {
                'preferences': {'$not': {'$elemMatch': {'$nin': user_preferences}}},
                'tags': {'$not': {'$elemMatch': {'$nin': user_tags}}},
                'platforms': {'$not': {'$elemMatch': {'$nin': user_platforms}}},
                '$or': [
                    {'$and': [
                        {'version_major_min': {'$lte': user_agent.version.major}},
                        {'version_minor_min': {'$lte': user_agent.version.minor}},
                    ]},
                    {'$and': [
                        {'version_minor_min': {'$exists': False}},
                        {'version_minor_min': {'$exists': False}},
                    ]},
                ],
            }}},
        ],
    }}
    yield {'$project': {
        'name': True,
        'nbf': True,
        'exp': True,
        'positions': {'$objectToArray': '$positions'},
    }}
    yield {'$unwind': '$positions'}
    yield {'$sort': {
        'exp': 1,
    }}
    yield {'$project': {
        '_id': False,
        'name': True,
        'position': '$positions.k',
        'url': {'$arrayElemAt': ['$positions.v.urls', 0]},
        'startedAt': {'$floor': {'$divide': [{'$subtract': ['$nbf', constants.UNIX_EPOCH]}, 1000]}},
        'endedAt': {'$floor': {'$divide': [{'$subtract': ['$exp', constants.UNIX_EPOCH]}, 1000]}},
    }}
    yield {'$group': {
        '_id': '$position',
        'items': {'$push': '$$ROOT'},
    }}

try:
    docs = Promotion.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    docs = list(docs)

ref:
https://docs.mongodb.com/manual/reference/operator/query/in/
https://docs.mongodb.com/manual/reference/operator/query/nin/
https://docs.mongodb.com/manual/reference/operator/aggregation/setIsSubset/

Do Distinct With $group

def stages():
    yield {'$match': {
        'tags': 'some_tag',
    }}
    yield {'$unwind': '$unlocks'}
    yield {'$replaceRoot': {'newRoot': '$unlocks'}}
    yield {'$match': {
        '_cls': 'MessagePackUnlock',
    }}
    yield {'$group': {
        '_id': '$user',
        'timestamp': {'$first': '$timestamp'},
    }}

for unlock in MessagePackMessage.objects.aggregate(*stages()):
    tasks.offline_purchase_pack.apply(kwargs=dict(
        user_id=unlock['_id'],
        message_pack_id=message_pack.id,
        timestamp=unlock['timestamp'],
    ))

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/group/

Slice Items In Each $group

import random

def stages():
    yield {'$match': {'tags': {'$regex': '^badge:'}}}
    yield {'$unwind': {'path': '$tags', 'includeArrayIndex': 'index'}}
    yield {'$match': {'tags': {'$regex': '^badge:'}}}
    yield {'$project': {'_id': True, 'tag': '$tags', 'index': {'$mod': ['$index', random.random()]}}}
    yield {'$sort': {'index': 1}}
    yield {'$group': {'_id': '$tag', 'users': {'$addToSet': '$_id'}}}
    yield {'$project': {'_id': True, 'users': {'$slice': ['$users', 1000]}}}

docs = User.objects.aggregate(*stages())
for doc in docs:
    badge, user_ids = doc['_id'], doc['users']

Collect Items With $group And $addToSet

User data:

{
    "_id" : ObjectId("5a66d5c2af9c462c617ce552"),
    "username" : "gibuloto",
    "tags" : [ 
        "beta"
    ],
    "schedules" : [ 
        {
            "tag" : "stats",
            "nbf" : ISODate("2018-02-01T16:00:00.000Z"),
            "exp" : ISODate("2018-08-12T16:00:00.000Z")
        }, 
        {
            "tag" : "vip",
            "nbf" : ISODate("2018-05-13T16:00:00.000Z"),
            "exp" : ISODate("2018-05-20T16:00:00.000Z")
        }
    ]
}
def stages():
    now = utils.utcnow()

    yield {'$match': {
        'schedules': {'$elemMatch': {
            'nbf': {'$lte': now},
            'exp': {'$gte': now}
        }}
    }}
    yield {'$unwind': '$schedules'}
    yield {'$match': {
        'schedules.nbf': {'$lte': now},
        'schedules.exp': {'$gte': now}
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'username': True,
        'tag': '$schedules.tag',
        'nbf': '$schedules.nbf',
        'exp': '$schedules.exp'
    }}
    yield {'$group': {
        '_id': '$id',
        'tags': {'$addToSet': '$tag'},
    }}

for user_tag_schedule in User.objects.aggregate(*stages()):
    print(user_tag_schedule)

# output:
# {'_id': ObjectId('579b9387b7af8e1fd1635da9'), 'tags': ['stats']}
# {'_id': ObjectId('5a66d5c2af9c462c617ce552'), 'tags': ['chat', 'vip']}

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/group/

Project A New Field Based On Whether Elements Exist In Another Array Field

Use $addFields with $cond.

def stages():
    user_preferences = g.user.settings.preferences or ['gender:female']
    yield {'$match': {
        'gender': {'$in': [prefix_gender.replace('gender:', '') for prefix_gender in user_preferences]}
    }}

    yield {'$addFields': {
        'isPinned': {'$cond': {
            'if': {'$in': [constants.tags.HIDDEN, '$badges']},
            'then': True,
            'else': False,
        }},
    }}
    yield {'$sort': {
        'isPinned': -1,
        'posted_at': -1,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'author': '$author',
        'title': '$title',
        'location': '$location',
        'postedAt': {'$floor': {'$divide': [{'$subtract': ['$posted_at', constants.UNIX_EPOCH]}, 1000]}},
        'viewCount': '$view_count',
        'commentCount': {'$size': {'$ifNull': ['$comments', []]}},
        'badges': '$badges',
        'isPinned': '$isPinned',
    }}

try:
    results = Post.objects.aggregate(*stages()).next()
except StopIteration:
    return Response(status=http.HTTPStatus.NOT_FOUND)

ref:
https://stackoverflow.com/questions/16512329/project-new-boolean-field-based-on-element-exists-in-an-array-of-a-subdocument
https://docs.mongodb.com/manual/reference/operator/aggregation/project/
https://docs.mongodb.com/manual/reference/operator/aggregation/addFields/
https://docs.mongodb.com/manual/reference/operator/aggregation/cond/

Project And Filter Out Elements Of An Array With $filter

Elements in details might have no value field.

def stages():
    yield {'$match': {
        '_id': bson.ObjectId(post_id),
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'author': '$author',
        'title': '$title',
        'location': '$location',
        'postedAt': {'$floor': {'$divide': [{'$subtract': ['$posted_at', constants.UNIX_EPOCH]}, 1000]}},
        'viewCount': '$view_count',
        'commentCount': {'$size': '$comments'},
        'details': [
            {'key': 'gender', 'value': '$gender'},
            {'key': 'pricing', 'value': '$pricing'},
            {'key': 'lineId', 'value': {'$ifNull': ['$lineId', None]}},
            {'key': 'description', 'value': {'$ifNull': ['$description', None]}},
        ],
    }}
    yield {'$addFields': {
        'details': {
            '$filter': {
                'input': '$details',
                'as': 'detail',
                'cond': {'$ne': ['$$detail.value', None]},
            }
        }
    }}

try:
    post = next(Post.objects.aggregate(*stages()))
except StopIteration:
    return Response(status=http.HTTPStatus.NOT_FOUND)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/filter/#exp._S_filter
https://docs.mongodb.com/manual/reference/operator/aggregation/addFields/

Project Specific Fields Of Elements Of An Array With $map

def stages():
    yield {'$match': {
        '_id': bson.ObjectId(post_id),
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'author': '$author',
        'title': '$title',
        'location': '$location',
        'postedAt': {'$floor': {'$divide': [{'$subtract': ['$posted_at', constants.UNIX_EPOCH]}, 1000]}},
        'viewCount': '$view_count',
        'commentCount': {'$size': '$comments'},
        'details': [
            {'key': 'gender', 'value': '$gender'},
            {'key': 'pricing', 'value': '$pricing'},
            {'key': 'lineId', 'value': {'$ifNull': ['$lineId', None]}},
            {'key': 'description', 'value': {'$ifNull': ['$description', None]}},
        ],
        'media': {
            '$map': {
                'input': '$media',
                'as': 'transcoded_media',
                'in': {
                    'mimetype': '$$transcoded_media.mimetype',
                    'dash': '$$transcoded_media.presets.dash',
                    'hls': '$$transcoded_media.presets.hls',
                    'thumbnail': '$$transcoded_media.thumbnail',
                }
            }
        },
    }}
    yield {'$addFields': {
        'details': {
            '$filter': {
                'input': '$details',
                'as': 'detail',
                'cond': {'$ne': ['$$detail.value', None]},
            }
        }
    }}

try:
    post = next(Post.objects.aggregate(*stages()))
except StopIteration:
    return Response(status=http.HTTPStatus.NOT_FOUND)

ref:
https://stackoverflow.com/questions/33831665/how-to-project-specific-fields-from-a-document-inside-an-array

Do Advanced $project With $let

If you find youself want to do $project twice to tackle some fields, you should use $let.

def stages():
    yield {'$match': {
        'purchases.user': g.user.id,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'purchasedAt': {
            '$let': {
                'vars': {
                    'purchase': {
                        '$arrayElemAt': [
                            {
                                '$filter': {
                                    'input': '$purchases',
                                    'as': 'purchase',
                                    'cond': {
                                        '$and': [
                                            {'$eq': ['$$purchase.user', g.user.id]},
                                        ],
                                    },
                                },
                            },
                            0,
                        ],
                    },
                },
                'in': '$$purchase.timestamp',
            },
        },
    }}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/let/

Deconstruct An Array Field With $unwind And Query Them With $match

def stages():
    category_tag = 'category:user'
    currency = 'usd'
    platform = 'ios'

    yield {'$match': {
        'active': True,
        'tags': category_tag,
        'total': {'$gt': 0},
        'preview_message': {'$exists': True},
    }}
    yield {'$unwind': '$skus'}
    yield {'$match': {
        'skus.attributes.platform': platform,
        'skus.attributes.currency': currency,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'caption': True,
        'description': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'sku': '$skus',
        'created_at': True,
        'is_purchased': {'$in': [g.user.id, {'$ifNull': ['$purchases.user', []]}]},
    }}
    yield {'$sort': {'is_purchased': 1, 'created_at': -1}}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/match/
https://docs.mongodb.com/manual/reference/operator/aggregation/unwind/
https://docs.mongodb.com/manual/reference/operator/aggregation/project/

Query The First Element In An Array Field With $arrayElemAt And $filter

def stages():
    category_tag = 'category:user'
    currency = 'usd'
    platform = 'ios'

    yield {'$match': {
        'active': True,
        'tags': category_tag,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'caption': True,
        'description': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'preview_message': True,
        'metadata': True,
        'created_at': True,
        'updated_at': True,
        'active': True,
        'sku': {
            '$ifNull': [
                {
                    '$arrayElemAt': [
                        {
                            '$filter': {
                                'input': '$skus',
                                'as': 'sku',
                                'cond': {
                                    '$and': [
                                        {'$eq': ['$$sku.currency', currency]},
                                        {'$eq': ['$$sku.attributes.platform', platform]},
                                    ]
                                }
                            },
                        },
                        0
                    ]
                },
                None
            ],
        },
        'tags': True,
        'total': True,
        'is_bought': {'$in': [g.user.id, {'$ifNull': ['$purchases.user', []]}]},
    }}
    yield {'$sort': {'is_bought': 1, 'created_at': -1}}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/master/reference/operator/aggregation/filter/
https://stackoverflow.com/questions/3985214/retrieve-only-the-queried-element-in-an-object-array-in-mongodb-collection

Join Another Collection Using $lookup

def stages():
    yield {'$match': {
        'tags': 'pack:prod_CR1u34BIpDbHeo',
    }}
    yield {'$lookup': {
        'from': 'user',
        'localField': 'sender',
        'foreignField': '_id',
        'as': 'sender_data',
    }}
    yield {'$unwind': '$sender_data'}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'sender': {
            'id': '$sender_data._id',
            'username': '$sender_data.username',
        },
        'caption': True,
        'posted_at': True,
    }}
    yield {'$sort': {'posted_at': -1}}

try:
    docs = Message.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://thecodebarbarian.com/a-nodejs-perspective-on-mongodb-36-lookup-expr

Join Another Collection With Multiple Conditions Using pipeline in $lookup

To access the let variables in the $lookup pipeline, you could only use the $expr operator.

var start = ISODate('2018-09-22T00:00:00.000+08:00');

db.getCollection('feature.shop.order').aggregate([
    {'$match': {
        'payment.timestamp': {'$gte': start},
        'status': {'$in': ['paid']},
    }},
    {'$lookup': {
        'from': 'user',
        'localField': 'customer',
        'foreignField': '_id',
        'as': 'customer_data',
    }},
    {'$unwind': '$customer_data'},
    {'$project': {
        'variation': '$customer_data.experiments.message_unlock_price.variation',
        'amount_normalized': {'$divide': ['$amount', 100.0]},
    }},
    {'$addFields': {
        'amount_usd': {'$multiply': ['$amount_normalized', 0.033]},
    }},
    {'$group': {
       '_id': '$variation',
       'purchase_amount': {'$sum': '$amount_usd'},
       'paid_user_count': {'$sum': 1},
    }},
    {'$lookup': {
        'from': 'user',
        'let': {
            'variation': '$_id',
        },
        'pipeline': [
            {'$match': {
                'last_active': {'$gte': start},
                'experiments': {'$exists': true},
            }},
            {'$match': {
                '$expr': {
                    '$and': [
                         {'$eq': ['$experiments.message_unlock_price.variation', '$$variation']},
                    ],
                },
            }},
            {'$group': {
               '_id': '$experiments.message_unlock_price.variation',
               'count': {'$sum': 1},
            }},
        ],
        'as': 'variation_data',
    }},
    {'$unwind': '$variation_data'},
    {'$project': {
        '_id': 1,
        'purchase_amount': 1,
        'paid_user_count': 1,
        'total_user_count': '$variation_data.count',
    }},
    {'$addFields': {
        'since': start,
        'arpu': {'$divide': ['$purchase_amount', '$total_user_count']},
        'arppu': {'$divide': ['$purchase_amount', '$paid_user_count']},
    }},
    {'$sort': {'_id': 1}},
]);

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#join-conditions-and-uncorrelated-sub-queries

or

def stages():
    yield {'$match': {'_id': bson.ObjectId(message_id)}}
    yield {'$limit': 1}
    yield {'$project': {
        '_cls': 1,
        'sender': 1,
        'unlocks': 1,
    }}
    yield {'$unwind': '$unlocks'}
    yield {'$match': {
        'unlocks.user': bson.ObjectId(user_id),
        'unlocks.amount': {'$gt': 0},
    }}
    yield {'$lookup': {
        'from': 'user',
        'let': {
            'sender': '$sender',
            'unlocker': '$unlocks.user',
        },
        'pipeline': [
            {'$match': {
                '$expr': {
                    '$or': [
                        {'$eq': ['$_id', '$$sender']},
                        {'$eq': ['$_id', '$$unlocker']}
                    ]
                }
            }}
        ],
        'as': 'users',
    }}
    yield {'$addFields': {
        'sender': {'$arrayElemAt': ['$users', 0]},
        'unlocker': {'$arrayElemAt': ['$users', 1]},
    }},
    yield {'$project': {
        '_id': 0,
        '_cls': 1,
        'id': '$_id',
        'sender': {
            'id': '$sender._id',
            'username': '$sender.username',
        },
        'unlocker': {
            'id': '$unlocker._id',
            'username': '$unlocker.username',
        },
        'amount': '$unlocks.amount',
    }}

try:
    context = Message.objects.aggregate(*stages()).next()
except StopIteration:
    pass

ref:
https://stackoverflow.com/questions/37086387/multiple-join-conditions-using-the-lookup-operator
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#specify-multiple-join-conditions-with-lookup

Count Documents In Another Collection With $lookup (JOIN)

def stages():
    category_tag = f'category:{category}'
    yield {'$match': {
        'active': True,
        'tags': category_tag,
    }}
    yield {'$addFields': {
        'message_pack_id_tag': {'$concat': ['pack:', '$_id']},
    }}
    yield {'$lookup': {
        'from': 'message',
        'localField': 'message_pack_id_tag',
        'foreignField': 'tags',
        'as': 'total',
    }}
    yield {'$addFields': {
        'total': {'$size': '$total'}
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'total': True,
    }}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#equality-match

Use $lookup as findOne() Which Returns An Object

Use $lookup and $unwind.

import bson

def stages():
    yield {'$match': {'_id': bson.ObjectId(gift_id)}}
    yield {'$limit': 1}
    yield {'$lookup': {
        'from': 'user',
        'localField': 'sender',
        'foreignField': '_id',
        'as': 'sender',
    }}
    yield {'$unwind': '$sender'}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'sender': {
            'id': '$sender._id',
            'username': '$sender.username',
        },
        'product_id': '$product._id',
        'sent_at': '$sent_at',
        'amount': '$cost.amount',
    }}

try:
    _context = Gift.objects.aggregate(*stages()).next()
except StopIteration:
    pass

ref:
https://stackoverflow.com/questions/37691727/how-to-use-mongodbs-aggregate-lookup-as-findone

Collapse Documents In An Array

def stages():
    yield {'$match': {
        'tags': f'tutorial:buy-diamonds:v1',
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'caption.text': True,
        'sender': True,
        'media.type': '$media.mimetype',
    }}
    yield {'$facet': {
        'inbox': [
            {'$sort': {'created_at': -1}},
            {'$limit': 10}
        ],
    }}
    yield {'$project': {
        'inbox': True,
        'required_unlock_count': {'$literal': 5},
        'price_per_message': {'$literal': 1200},
    }}

try:
    result = Message.objects.aggregate(*stages()).next()
except StopIteration:
    result = {}

JSON output:

{
    "inbox": [
        {
            "caption": {
                "text": "fuck yeah"
            },
            "id": "5aaba1e9593950337a90dcb3",
            "media": {
                "type": "video/mp4"
            },
            "sender": "5a66d5c2af9c462c617ce552"
        },
        {
            "caption": {
                "text": "test"
            },
            "id": "5ad549276b2c362a4efe5e21",
            "media": {
                "type": "image/jpeg"
            },
            "sender": "5a66d5c2af9c462c617ce552"
        }
    ],
    "price_per_message": 1200,
    "required_unlock_count": 5
}

Do Pagination With $facet And $project

def stages():
    # normal query
    yield {'$match': {
        'purchases.user': g.user.id,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'created_at': True,
        'meta': {
            'revision': '$revision',
            'tags': '$tags',
        },
    }}
    yield {'$sort': {'created_at': -1}}

    # pagination
    page = 0
    limit = 10
    yield {'$facet': {
        'meta': [
            {'$count': 'total'},
        ],
        'objects': [
            {'$skip': page * limit},
            {'$limit': limit},
        ]
    }}
    # JSON output:
    # {
    #    "meta": [
    #       {"total": 2}
    #    ],
    #    "objects": [
    #       {
    #          "id": "prod_CR1u34BIpDbHeo",
    #          "name": "Product Name 2"
    #       },
    #       {
    #          "id": "prod_Fkhf9JFK3Rdgk9",
    #          "name": "Product Name 1"
    #       }
    #    ]
    # }
    yield {'$project': {
        'total': {'$let': {
            'vars': {
                'meta': {'$arrayElemAt': ['$meta', 0]},
            },
            'in': '$$meta.total',
        }},
        'objects': True,
    }}
    # JSON output:
    # {
    #    "total": 2,
    #    "objects": [
    #       {
    #          "id": "prod_CR1u34BIpDbHeo",
    #          "name": "Product Name 2"
    #       },
    #       {
    #          "id": "prod_Fkhf9JFK3Rdgk9",
    #          "name": "Product Name 1"
    #       }
    #    ]
    # }

try:
    output = MessagePackProduct.objects.aggregate(*stages()).next()
except StopIteration:
    output = {}
else:
    print(output)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/facet/
https://docs.mongodb.com/manual/reference/operator/aggregation/project/

Perform $facet + $project => Unwrap with $unwind => Do $facet + $project Again

def stages():
    yield {'$match': {
        'purchases.user': g.user.id,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'created_at': True,
    }}
    yield {'$sort': {'created_at': -1}}

    # pagination
    page = 0
    limit = 10
    yield {'$facet': {
        'meta': [
            {'$count': 'total'},
        ],
        'objects': [
            {'$skip': page * limit},
            {'$limit': limit},
        ]
    }}
    yield {'$project': {
        'total': {'$let': {
            'vars': {
                'meta': {'$arrayElemAt': ['$meta', 0]},
            },
            'in': '$$meta.total',
        }},
        'objects': True,
    }}

    # do $lookup after the pagination
    yield {'$unwind': '$objects'}
    yield {'$addFields': {
        'objects.message_pack_id_tag': {'$concat': ['pack:', '$objects.id']},
    }}
    yield {'$lookup': {
        'from': 'message',
        'localField': 'objects.message_pack_id_tag',
        'foreignField': 'tags',
        'as': 'objects.total',
    }}
    yield {'$addFields': {
        'objects.total': {'$size': '$objects.total'}
    }}

    # re-wrap into the pagination structure
    yield {'$facet': {
        'total_list': [
            {'$project': {
                'total': True,
            }},
        ],
        'objects': [
            {'$replaceRoot': {'newRoot': '$objects'}},
        ]
    }}
    yield {'$project': {
        'total': {'$let': {
            'vars': {
                'meta': {'$arrayElemAt': ['$total_list', 0]},
            },
            'in': '$$meta.total',
        }},
        'objects': True,
    }}

try:
    output = MessagePackProduct.objects.aggregate(*stages()).next()
except StopIteration:
    output = {}
else:
    print(output)

Do $group First To Reduce Numbers Of $lookup Calls

def stages():
    yield {'$match': {
        'tags': f'pack:{message_pack_id}',
    }}
    yield {'$group': {
        '_id': '$sender',
        'messages': {'$push': '$$ROOT'},
    }}
    yield {'$lookup': {
        'from': 'user',
        'localField': '_id',
        'foreignField': '_id',
        'as': 'sender_data',
    }}
    yield {'$unwind': '$messages'}
    yield {'$project': {
        '_id': False,
        'id': '$messages._id',
        'caption': {
            'text': '$messages.caption.text',
            'y': '$messages.caption.y',
        },
        'sender': {
            'id': {'$arrayElemAt': ['$sender_data._id', 0]},
            'username': {'$arrayElemAt': ['$sender_data.username', 0]},
        },
    }}

try:
    docs = Message.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/group/

Copy Collections To Another Database

var bulk = db.getSiblingDB('target_db')['target_collection'].initializeOrderedBulkOp();
db.getCollection('source_collection').find().forEach(function(d) {
    bulk.insert(d);
});
bulk.execute();

var bulk = db.getSiblingDB('test')['company.revenue'].initializeOrderedBulkOp();
db.getCollection('company.revenue').find().forEach(function(d) {
    bulk.insert(d);
});
bulk.execute();

var bulk = db.getSiblingDB('test')['user.contract'].initializeOrderedBulkOp();
db.getCollection('user.contract').find().forEach(function(d) {
    bulk.insert(d);
});
bulk.execute();

var bulk = db.getSiblingDB('test')['user.revenue'].initializeOrderedBulkOp();
db.getCollection('user.revenue').find().forEach(function(d) {
    bulk.insert(d);
});
bulk.execute();

ref:
https://stackoverflow.com/questions/11554762/how-to-copy-a-collection-from-one-database-to-another-in-mongodb

Sadly, cloneCollection() cannot clone collections from one local database to another local database.

ref:
https://docs.mongodb.com/manual/reference/command/cloneCollection/

Useful Tools

Backup

$ mongodump -h  127.0.0.1:27017 --oplog -j=8 --gzip --archive=/data/mongodump.tar.gz

ref:
https://docs.mongodb.com/manual/reference/program/mongodump/

Restore

$ mongorestore --drop --gzip --archive=2018-08-12T03.tar.gz

This kind of error typically indicates some sort of issue with data corruption, which is often caused by problems with the underlying storage device, file system or network connection.

restoring indexes for collection test.message from metadata
Failed: test.message: error creating indexes for test.message: createIndex error: BSONElement: bad type -47

ref:
https://docs.mongodb.com/manual/reference/program/mongorestore/

Profiling

You could also set the profiling level to 2 to record every query.

db.setProfilingLevel(2);

db.getCollection('system.profile').find({
    'ns': { 
        '$nin' : ['test.system.profile', 'test.system.indexes', 'test.system.js', 'test.system.users']
    }
}).limit(5).sort({'ts': -1}).pretty();

ref:
https://docs.mongodb.com/manual/tutorial/manage-the-database-profiler/
https://stackoverflow.com/questions/15204341/mongodb-logging-all-queries

$ pip install mongotail

# set the profiling level
$ mongotail 127.0.0.1:27017/test -l 2

# tail logs
$ mongotail 127.0.0.1:27017/test -f -m -f

ref:
https://github.com/mrsarm/mongotail

Monitoring

$ mongotop
$ mongostat

ref:
https://docs.mongodb.com/manual/reference/program/mongotop/
https://docs.mongodb.com/manual/reference/program/mongostat/

$ pip install mtools

$ mloginfo mongod.log

ref:
https://github.com/rueckstiess/mtools

Speed up Python and Node.js builds on Travis CI

Speed up Python and Node.js builds on Travis CI

Travis CI's caching archives all directories listed in the configuration and uploads them to Amazon S3. Cached contents are available to any build on the repository, including Pull Requests. For Python and Node.js projects, you could cache both site-packages and node_modules directories in every Travis CI build.

Here is an example of .travis.yml:

sudo: false

language: python

python:
  - "2.7"

node_js: 4

cache:
  directories:
    - $HOME/.cache/pip
    - $HOME/virtualenv/python2.7.9/lib/python2.7/site-packages
    - node_modules

before_install:
  - pip install -U pip

install:
  - pip install -r requirements.txt
  - pip install coverage --ignore-installed
  - npm install

script:
  - coverage run manage.py test

In the case of mine, after applying these changes, the installation time of pip and npm reduces from 180 seconds to 5 seconds.

One thing should be mentioned here: Since we didn't specify any bin folder in the configuration (and I don't think that's necessary), any execution file that being installed by pip such as coverage or django-admin.py will not exist in subsequent builds. If you need those commands, you could just force install them by adding pip install some_package --ignore-installed.

ref:
https://docs.travis-ci.com/user/caching/
https://stackoverflow.com/questions/19422229/how-to-cache-requirements-for-a-django-project-on-travis-ci
https://tzangms.com/how-to-speed-up-python-unit-test-on-travis-ci/

AWS Lambda Cookbook

AWS Lambda Cookbook

AWS Lambda is an event-driven service that you can upload your code to it and run those code on-demand without having your own servers.

ref:
http://aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/limits.html

API Gateway 就是 URL routing
Lambda 則是那些 route (endpoint) 對應的 handler
如果你是用 event 或 schedule 的方式呼叫 Lambda function 的話
可以不用 API Gateway

AWS Lambda 有兩種 invocation type
一是 RequestResponse,同步(例如綁定 API Gateway 和你在 Lambda Management Console 操作的時候)
二是 Event,非同步

Runtimes

AWS Lambda supports the following runtime versions:

  • nodejs (Node v0.10)
  • nodejs4.3
  • java
  • python

ref:
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

Node.js

const aws = require('aws-sdk');

exports.handle = (event, context, callback) => {
  doYourShit();
  callback(null, 'DONE');
};

每個 Lambda function 會接收三個參數 eventcontextcallback

event 是從外部的 input
可能是來自 S3 object event、DynamoDB stream 或是由 API Gateway POST 進來的 JSON payload

context 則會包含當前這個 Lambda fuction 的一些 metadata
例如 context.getRemainingTimeInMillis()

callback 參數只有 Node.js runtime v4.3 才支援
v0.10 的話得用 context.succeed()context.fail()context.done()
不過誰他媽還在用 Node.js v0.10

ref:
http://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-context.html
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

Calling another Lambda function in a Lambda function.

要注意的是
你的 Lambda function 的 role 得要有 invoke 其他 Lambda function 的權限才行

const util = require('util');

const aws = require('aws-sdk');

const params = {
  FunctionName: 'LambdaBaku_syncIssue',
  InvocationType: 'Event', // means asynchronous execution
  Payload: JSON.stringify({ issue_number: curatedIssue.number }),
};

lambda.invoke(params, (err, data) => {
  if (err) {
    console.log('FAIL', params);
    console.log(util.inspect(err));
  } else {
    console.log(data);
  }
});

ref:
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Lambda.html
http://stackoverflow.com/questions/31714788/can-an-aws-lambda-function-call-another

完整的程式碼放在 GitHub 上
https://github.com/CodeTengu/lambdabaku

Users and Roles

如果你是用 apex 來管理 Lambda functions 的話
確保你用的 AWS credential (User) 擁有 AWSLambdaFullAccessAWSLambdaRole 這兩個 permissions

以 project 為單位建立 Role 即可
例如 lambdabaku_role
你可以在 IAM Management Console 找到那些你建立的 roles
基本上用 Basic execution role 就夠了
反正之後可以隨時修改 Role 的 permission / policy
Lambda function 屬於哪個 VPC 是額外指定的
跟 Role 沒有關係
也就是說你用 Basic execution role 還是可以支援 VPC

如果想在 Lambda function 裡存取 DynamoDB
要記得在 Role 裡新增對應的設定

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "",
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": "*"
        },
        {
            "Sid": "Stmt1428341300017",
            "Effect": "Allow",
            "Action": [
                "dynamodb:*"
            ],
            "Resource": [
                "arn:aws:dynamodb:ap-northeast-1:004615714446:table/CodeTengu_Preference",
                "arn:aws:dynamodb:ap-northeast-1:004615714446:table/CodeTengu_WeeklyIssue",
                "arn:aws:dynamodb:ap-northeast-1:004615714446:table/CodeTengu_WeeklyPost"
            ]
        }
    ]
}

Scheduled Events

ref:
http://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html

API Gateway

單純一點的話
Security 可以選 Open with access key
然後到 API Gateway 介面的 API Keys 底下新增一組 access key
然後分配一個 API stage 給它

使用的時候在 HTTP header 加上 x-api-key: YOUR_API_KEY 即可

ref:
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-api-keys.html

Related Projects

ref:
https://github.com/serverless/serverless
https://github.com/apex/apex
https://github.com/claudiajs/claudia
https://github.com/garnaat/kappa
https://github.com/Miserlou/Zappa
https://github.com/nficano/python-lambda

淺析 serverless 架構與實作
http://abalone0204.github.io/2016/05/22/serverless-simple-crud/

Deploy Lambda Functions via apex

$ curl https://raw.githubusercontent.com/apex/apex/master/install.sh | sh

$ apex deploy
$ apex invoke syncPublishedIssues --logs
$ echo -n '{"issue_number": 43}' | apex invoke syncIssue --logs

ref:
https://github.com/apex/apex
http://apex.run/

AWS DynamoDB Notes

AWS DynamoDB Notes

AWS DynamoDB is a fully managed key-value store (also document store) NoSQL database as a service provided by Amazon Web Services. Its pricing model is that you only pay for the throughput (read and write) you use instead of the storage usage and the running hours of database instances.

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://www.slideshare.net/AmazonWebServices/design-patterns-using-amazon-dynamodb

Glossary

DynamoDB is schema-less.

  • table: a table is a collection of items.
  • item: an item is a collection of attributes (key-value pairs).
  • attribute: attribute is similar to fields or columns in other databases.
  • primary key: one or two attributes that can uniquely identify every item in a table.
    • partition key (aka hash key): a simple primary key, composed of one attribute.
    • partition key and sort key (aka range key): a composite primary key, composed of two attributes.

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

Global Secondary Index (GSI)

secondary index 指的是除了 primary key 之外的第二組 key
可以有很多組 secondary index
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

GSI 可以用在是 partition key 或 partition + sort key 的 table
GSI 跟 primary key 一樣可以 simple 或是 composite 的
GSI 可以隨時增減

如果你不需要 strong consistency 或個別 partition 的資料量大於 10GB
那就用 GSI

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
http://iamgarlic.blogspot.tw/2015/01/amazon-dynamodb-global-secondary-index.html

Local Secondary Index (LSI)

LSI 只能用在是 partition + sort key 的 table
LSI 必須用原本的 partition key 搭配其他 attribute 做為新的 partition + sort key(LSI 只會是 composite 的)
LSI 只能在建立 table 的時候定義

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
http://iamgarlic.blogspot.tw/2015/01/amazon-dynamodb-local-secondary-index.html

Query and Scan

能不用 scan 就不用
畢竟這個操作就是去掃 table 裡的所有 item

primary key 和 local secondary index 只能在建立 table 時指定
一旦建立就不能改了
但是 global secondary index 就沒有這個限制

如果是用 partition + sork key 當 primary key
get 的時候要同時給 partition key 和 sort key
query 的時候可以只給 partition key 而 sort key 可給可不給(但是 partition key 一定要給)

無論是當 primary key、GSI 或 LSI
只要是 partition key 的 attribute 一律只能使用 = 來 query
該 attribute 沒有 rich query 的能力(就是 >, <, between, contains 那些條件)
sort key 才會有 rich query

Best Practices
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html

Choosing a Partition Key
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html

Querying DynamoDB by date
http://stackoverflow.com/questions/14836600/querying-dynamodb-by-date

Pick an item randomly
http://stackoverflow.com/questions/10666364/aws-dynamodb-pick-a-record-item-randomly

ref:
https://www.uplift.agency/blog/posts/2016/03/clearcare-dynamodb
https://medium.com/building-timehop/one-year-of-dynamodb-at-timehop-f761d9fe5fa1#.3g97b3lqy

Commands

DynamoDB is schema-less, so that you can only define keys you need for specifying primary key or local secondary index when creating table.

# 可以用 project name 作為 table name 的 prefix
# 之後可以隨時修改 read / write capacity units
$ aws dynamodb create-table \
--table-name CodeTengu_Preference \
--attribute-definitions AttributeName=name,AttributeType=S \
--key-schema AttributeName=name,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

$ aws dynamodb create-table \
--table-name CodeTengu_WeeklyIssue \
--attribute-definitions AttributeName=number,AttributeType=N AttributeName=publication,AttributeType=S AttributeName=publishedAt,AttributeType=N \
--key-schema AttributeName=number,KeyType=HASH \
--global-secondary-indexes IndexName=publication_published_at,KeySchema='[{AttributeName=publication,KeyType=HASH},{AttributeName=publishedAt,KeyType=RANGE}]',Projection='{ProjectionType=ALL}',ProvisionedThroughput='{ReadCapacityUnits=5,WriteCapacityUnits=5}' \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

$ aws dynamodb create-table \
--table-name CodeTengu_WeeklyPost \
--attribute-definitions AttributeName=issueNumber,AttributeType=N AttributeName=id,AttributeType=N  AttributeName=categoryCode,AttributeType=S \
--key-schema AttributeName=issueNumber,KeyType=HASH AttributeName=id,KeyType=RANGE \
--global-secondary-indexes IndexName=categoryCode_id,KeySchema='[{AttributeName=categoryCode,KeyType=HASH},{AttributeName=id,KeyType=RANGE}]',Projection='{ProjectionType=ALL}',ProvisionedThroughput='{ReadCapacityUnits=5,WriteCapacityUnits=5}' \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

ref:
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/create-table.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/update-table.html

$ aws dynamodb put-item \
--table-name CodeTengu_Preference \
--item file://fixtures/curated_api_config.json \
--return-consumed-capacity TOTAL

# fixtures/curated_api_config.json
{
  "name": { "S": "curated_api_config" },
  "apiKey": { "S": "xxx" }
}

ref:
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/put-item.html

$ aws dynamodb get-item \
--table-name CodeTengu_WeeklyIssue \
--key '{"number": {"N": "42"}}'

ref:
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/get-item.html

Usage

你應該用 AWS.DynamoDB.DocumentClient
而不是直接用 AWS.DynamoDB

const AWS = require('aws-sdk');

const dynamodb = new AWS.DynamoDB({ apiVersion: '2012-08-10', region: 'ap-northeast-1' });
const dynamodbClient = new AWS.DynamoDB.DocumentClient({ service: dynamodb });

const params = {
  RequestItems: {
    CodeTengu_Preference: {
      Keys: [
        { name: 'xxx' },
      ],
    },
  },
};

dynamodbClient.batchGet(params, (err, data) => {
  if (err) {
    console.log('fail');
    console.log(err);
  } else {
    console.log('success');
    console.log(data);
  }
});

ref:
http://aws.amazon.com/sdk-for-node-js/
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html

完整的程式碼放在 GitHub 上
https://github.com/CodeTengu/lambdabaku