在這個系列的文章裡,我們將使用 Apache Spark、XGBoost、Elasticsearch 和 MySQL 等工具來搭建一個推薦系統的 Machine Learning Pipeline。推薦系統的組成可以粗略地分成 Candidate Generation 和 Ranking 兩個部分,前者是針對用戶產生候選物品集,常用的方法有 Collaborative Filtering、Content-based、標籤配對、熱門排行或人工精選等;後者則是對這些候選物品排序,以 Top N 的方式呈現最終的推薦結果,常用的方法有 Logistic Regression。
在本篇文章中,我們將以 Candidate Generation 階段常用的方法之一:Content-based recommendation 基於內容的推薦為例,利用 Elasticsearch 的 More Like This query 建立一個 GitHub repositories 的推薦系統,以用戶最近打星過的 repo 作為輸入數據,比對出相似的其他 repo 作為候選物品集。
題外話,我原本是打算用 Spark 把 repo 的文本資料轉成 Word2Vec 向量,然後事先計算好各個 repo 之間的相似度(所謂的 Similarity Join),但是要計算這麼多 repo 之間的相似度實在太耗時間和機器了,就算用了 DIMSUM 和 Locality Sensitive Hashing (LSH) 的 Approximate Nearest Neighbor Search 的效果也不是很好。後來一想,尋找相似或相關物品這件事不就是搜尋引擎在做的嗎,所以直接把 repo 的各種資料丟進 Elasticsearch,用 document id 當作搜尋條件,一個 More Like This query 就解決了,爽快。畢竟不需要所有的事情都在 Spark 裡解決嘛。
完整的程式碼可以在 https://github.com/vinta/albedo 找到。
系列文章:
- Build a recommender system with Spark: Implicit ALS
- Build a recommender system with Spark: Content-based and Elasticsearch
- Build a recommender system with Spark: Logistic Regression
- Feature Engineering 特徵工程中常見的方法
- Spark ML cookbook (Scala)
- Spark SQL cookbook (Scala)
- 不定期更新中
Setup Elasticsearch
為了讓事情簡單一點,我們直接用官方包裝好的 Docker image。另外要注意的是,Elasticsearch 5.x/6.x 跟之前的版本比起來有不小的改動,例如 X-Pack、high-level REST client 和以後每個 index 只能有一個 mapping type 等等,建議大家有空可以翻一下文件。
然後就可以在 http://127.0.0.1:9200/ 存取你的 Elasticsearch cluster 了。
ref:
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/security-settings.html
Define the Mapping (Data Schema)
這裡用 elasticsearch-dsl-py
定義了一個 index 和 mapping type。
Elasticsearch: More than a Search Engine
https://vinta.ws/code/elasticsearch-more-than-a-search-engine.html
ref:
https://github.com/elastic/elasticsearch-dsl-py
Import Data into Elasticsearch
你可以透過很多種手段把存在 MySQL 裡的資料倒進 Elasticsearch,例如 cronjob、Celery 或 MySQL binglog replication,不過因為我們主要的 data models 是用 Django ORM 寫的,這裡就簡單地寫個 Django command 把資料倒進去就好。
noplay/python-mysql-replication
https://github.com/noplay/python-mysql-replication
Find Similar Items
因為之後會在 Spark 裡作為推薦系統的候選物品集的來源之一,我們會把 Elasticsearch 的 More Like This API 封裝成一個 Spark 的 Transformer,所以以下的部分是用 Scala 寫的。
Initialize High-level REST Client
Elasticsearch 5.x 之後官方建議使用 High-level REST Client,用法跟以前 Java 的 TransportClient
稍微有點不同。
ref:
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-low-usage-initialization.html
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high-getting-started-initialization.html
Perform the More Like This Query
我們會輸入一個 userDF
,是一個要產生候選物品集的用戶的 DataFrame,然後會先拿到每個用戶最近打星過的 repo 的列表,repo id 就是 Elasticsearch 的 document id,以此為條件用 More Like This query 找出相似的其他 repo。
你可以在 GitHub 找到完整的程式碼
https://github.com/vinta/albedo/blob/master/src/main/scala/ws/vinta/albedo/ContentRecommenderBuilder.scala
ref:
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/java-specialized-queries.html