MongoDB cookbook: Queries and Aggregations

Frequently accessed items are cached in memory, so that MongoDB can provide optimal response time.

MongoDB Shell in JavaScript

Administration

db.currentOp();

// slow queries
db.currentOp({
    "active": true,
    "secs_running": {"$gt" : 3},
    "ns": /^swag\./
});

// queries not using any index
db.adminCommand({ 
    "currentOp": true,
    "op": "query", 
    "planSummary": "COLLSCAN"
});

// operations with high numYields
db.adminCommand({ 
    "currentOp": true, 
    "ns": /^swag\./, 
    "numYields": {"$gte": 100} 
}) 

db.serverStatus().connections
{
    "current" : 269,
    "available" : 838591,
    "totalCreated" : 417342
}

ref:
https://docs.mongodb.com/manual/reference/method/db.currentOp/
https://hackernoon.com/mongodb-currentop-18fe2f9dbd68
http://www.mongoing.com/archives/6246

BSON Types

ref:
https://docs.mongodb.com/manual/reference/bson-types/

Check If A Document Exists

It is significantly faster to use find() + limit() because findOne() will always read + return the document if it exists. find() just returns a cursor (or not) and only reads the data if you iterate through the cursor.

db.getCollection('message').find({_id: ObjectId("585836504b287b5022a3ae26", delivered: false)}, {_id: 1}).limit(1)

ref:
https://stackoverflow.com/questions/8389811/how-to-query-mongodb-to-test-if-an-item-exists
https://blog.serverdensity.com/checking-if-a-document-exists-mongodb-slow-findone-vs-find/

Find Documents

db.getCollection('user').find({username: 'nanababy520'})

db.getCollection('message').find({_id: ObjectId("5a6383b8d93d7a3fadf75af3")})

db.getCollection('message').find({_cls: 'Message'}).sort({posted_at: -1})

db.getCollection('message').find({sender: ObjectId("57aace67ac08e72acc3b265f"), pricing: {$ne: 0}})

db.getCollection('message').find({
    sender: ObjectId("5ac0f56038cfff013a123d85"),
    created_at: {
        $gte: ISODate('2018-04-21 12:00:00Z'),
        $lte: ISODate('2018-04-21 13:00:00Z')
    }
})
.sort({created_at: -1})

Find Documents With Regular Expression

db.getCollection('user').find({'username': /vicky/})

ref:
https://docs.mongodb.com/manual/reference/operator/query/regex/

Find Documents With An Array Field

  • $in: [...] means "intersection" or "any element in"
  • $all: [...] means "subset" or "contain"
  • $elemMatch: {...} means "any element match"
  • $not: {$elemMatch: {$nin: [...]}} means "subset" or "in"

The last one roughly means not any([False, False, False, False]) where each False is indicating if the item is not in in [...].

ref:
https://stackoverflow.com/questions/12223465/mongodb-query-subset-of-an-array

db.getCollection('message').find({includes: ObjectId("5a4bb448af9c462c610d0cc7")})

db.getCollection('user').find({gender: 'F', tags: 'promoted'})
db.getCollection('user').find({gender: 'F', 'tags.1': {$exists: true}})

ref:
https://docs.mongodb.com/manual/reference/operator/query/exists/#exists-true

Find Documents With An Array Field Of Embedded Documents

Usually, you could use $elemMatch.

{'the_array_field': {'$elemMatch': {
    'a_field_of_each_element': {'$lte': now},
    'another_field_of_each_element': 123
}}}
db.getCollection('message').find({
    unlocks: {
        $elemMatch: {
            _cls: 'PointsUnlock',
            user: ObjectId("57f662e727a79d07993faec5")
        }
    }
})

db.getCollection('feature.shop.product').find({
    purchases: {
        $elemMatch: {
            _cls: 'Purchase'
        }
    }
})

db.getCollection('feature.shop.product').find({
    '_id': 'prod_CWlSTXBEU4mhEu',
    'purchases': {'$not': {'$elemMatch': {
        '_cls': 'DirectPurchase',
        'user': ObjectId("58b61d9094ab56f912ba10a5")
    }}},
})

ref:
https://docs.mongodb.com/manual/reference/operator/query/elemMatch/

Find Documents With Existence Of Fields Or Values

  • .find({'field': {'$exists': true}}): the field exists
  • .find({'field': {'$exists': false}}): the field does not exist
  • .find({'field': {'$type': 10}}): the field exists with a null value
  • .find({'field': null}): the field exists with a null value or the field does not exist
  • .find({'field': {'$ne': null}}): the field exists and the value is not null
db.test.insert({'num': 1, 'check': 'value'})
db.test.insert({'num': 2, 'check': null})
db.test.insert({'num': 3})

db.test.find({});

db.test.find({'check': {'$exists': true}})
// return 1 and 2

db.test.find({'check': {'$exists': false}})
// return 3

db.test.find({'check': {'$type': 10}});
// return 2

db.test.find({'check': null})
// return 2 and 3

db.test.find({'check': {'$ne': null}});
// return 1

ref:
https://stackoverflow.com/questions/4057196/how-do-you-query-this-in-mongo-is-not-null
https://docs.mongodb.com/manual/tutorial/query-for-null-fields/

Find Documents Where An Array Field Does Not Contain A Certain Value

db.getCollection('user').update({_id: ObjectId("579994ac61ff217f96a585d9"), tags: {$ne: 'tag_to_add'}}, {$push: {tags: 'tag_to_add'}})

db.getCollection('user').update({_id: ObjectId("579994ac61ff217f96a585d9"), tags: {$nin: ['tag_to_add']}}, {$push: {tags: 'tag_to_add'}})

ref:
https://stackoverflow.com/questions/16221599/find-documents-with-arrays-not-containing-a-document-with-a-particular-field-val

Find Documents Where An Array Field Is Not Empty

db.getCollection('message').find({unlocks: {$exists: true}})

ref:
https://stackoverflow.com/questions/14789684/find-mongodb-records-where-array-field-is-not-empty

Find Documents Where An Array Field's Size Is Greater Than 1

db.getCollection('user.inbox').find({
    'messages.0': {'$exists': true}
})

db.getCollection('message').find({
    '_cls': 'Message',
    'unlocks.10': {'$exists': true}
}).sort({'posted_at': -1})

db.getCollection('message').find({
    '_cls': 'Message.ChatMessage',
    'sender': ObjectId("582ee32a5b9c861c87dc297e"),
    'unlocks': {'$exists': true, '$not': {'$size': 0}}
})

ref:
https://stackoverflow.com/questions/7811163/query-for-documents-where-array-size-is-greater-than-1/15224544

Find Documents With Computed Values Using $expr

For instance, compare 2 fields from a single document in a find() query.

db.getCollection('user').find({
    $expr: {
        $eq: [{$size: '$follows'}, {$size: '$blocks'}]
    }
})

ref:
https://thecodebarbarian.com/a-nodejs-perspective-on-mongodb-36-lookup-expr
https://dzone.com/articles/expressive-query-language-in-mongodb-36-2

Project A Subset Of An Array Field With $filter

A sample document:

{
    "_id" : "message_unlock_pricing",
    "seed" : 42,
    "distributions" : {
        "a" : 0.5,
        "b" : 0.5
    },
    "whitelist" : [ 
        {
            "_id" : ObjectId("57dd071dd20fc40c0cbed6b7"),
            "variation" : "a"
        }, 
        {
            "_id" : ObjectId("5b1173a1487fbe2b2e9bba04"),
            "variation" : "b"
        }, 
        {
            "_id" : ObjectId("5a66d5c2af9c462c617ce552"),
            "variation" : "b"
        }
    ]
}
var now = new Date();

db.getCollection('feature.ab.experiment').aggregate([
    {'$project': {
        '_id': 1,
        'seed': 1,
        'distributions': 1,
        'whitelist': {
            '$filter': {
               'input': {'$ifNull': ["$whitelist", []]},
               'as': "user",
               'cond': {'$eq': ['$$user._id', ObjectId("5a66d5c2af9c462c617ce552")]}
            }
         }
    }},
    {'$unwind': {
        'path': '$whitelist',
        'preserveNullAndEmptyArrays': true
    }}
])

ref:
https://stackoverflow.com/questions/42607221/mongodb-aggregation-project-check-if-array-contains

Insert Documents

db.getCollection('feature.launch').insert({
    'url': '//asia.public.swag.live/launchs/5a06b88aaf9c462c6146ce12.jpg',
    'user': {
        'id': ObjectId("5a06b88aaf9c462c6146ce12"),
        'username': 'luke0804',
        'tags': ["gender:male"]
    }
})

db.getCollection('feature.launch').insert({
    'url': '//asia.public.swag.live/launchs/57c16f5bb811055b66d8ef46.jpg',
    'user': {
        'id': ObjectId("57c16f5bb811055b66d8ef46"),
        'username': 'riva',
        'tags': ["gender:female"]
    }
})

Update Within A For Loop

var oldTags = ['famous', 'newstar', 'featured', 'western', 'recommended', 'popular'];
oldTags.forEach(function(tag) {
    db.getCollection('user').updateMany({tags: tag}, {$addToSet: {tags: 'badge:' + tag}});
});

Update An Array Field

You should use arrayFilters as much as possible.

The syntax of arrayFilters would be:

db.collection.update(
   {<query selector>},
   {<update operator>: {"array.$[<identifier>].field": value}},
   {arrayFilters: [{<identifier>: <condition>}}]}
)
Inbox._get_collection().update_many(
    {'messages.id': message_id},
    {'$set': {'messages.$[message].tags': tags}},
    array_filters=[
        {'message.id': message_id},
    ],
)

ref:
https://docs.mongodb.com/manual/reference/operator/update/positional-filtered/

Insert an element into an array field at a certain position.

db.getCollection('feature.forums.post').update(
   { _id: ObjectId("5b3c6a9c8433b15569cae54e") },
   {
     $push: {
        media: {
           $each: [{
                "mimetype" : "image/jpeg",
                "url" : "https://asia.uploads.swag.live/posts/5adb795b47d057338abe8910.jpg",
                "presets" : {}
            }],
           $position: 1
        }
     }
   }
)

Or use explicit array index $set.

media_id = 'xxx'
media_slot = 0

Post.objects \
    .filter(id=post_id, **{f'media__{media_slot}__id__ne': media_id}) \
    .update_one(__raw__={'$set': {f'media.{media_slot}': {'id': media_id}}})

ref:
https://docs.mongodb.com/manual/reference/operator/update/position/

Set an array field to empty.

db.getCollection('message').update(
    {'tags': 'pack:joycelai-1'},
    {'$set': {'unlocks': []}},
    {'multi': true}
)

db.getCollection('feature.shop.product').update(
    {},
    {'$set': {'purchases': []}},
    {'multi': true}
)

ref:
https://docs.mongodb.com/manual/reference/method/db.collection.update/
https://docs.mongodb.com/manual/reference/operator/update/set/

Remove elements from an array field.

var userId = ObjectId("57985b784af4124063f090d3");

db.getCollection('user').update(
    {'follows.user': userId},
    {'$pull': {'follows': {'user': userId}}},
    {
        'multi': true,
    }
);

db.getCollection('message').update(
    {'_id': {'$in': [
        ObjectId('5aca1ffc4271ab1624787ec4'),
        ObjectId('5aca31ab93ef2936291c3dd4'),
        ObjectId('5aca33d9b5eaef04943c0d0b'),
        ObjectId('5aca34e7a48c543b07fb0a0f'),
        ObjectId('5aca272d93ef296edc1c3dee'),
        ObjectId('5aca342aa48c54306dfb0a21'),
        ObjectId('5aca20756bd01023a8cb02e9')
    ]}},
    {'$pull': {'tags': 'pack:prod_D75YlDMzcCiAw3'}},
    {'multi': true}
);

ref:
https://docs.mongodb.com/manual/reference/operator/update/pull/

Update Large Numbers Of Documents

Use Bulk.find.arrayFilters() and Bulk.find.update() together.

import datetime

expiration_time = datetime.datetime.utcnow() - datetime.timedelta(hours=48)

bulk = Outbox._get_collection().initialize_unordered_bulk_op()

for outbox in Outbox.objects.only('id').filter(messages__posted_at__lt=expiration_time):
    bulk.find({'_id': outbox.id}).update_one({
        '$pull': {'messages': {
            'posted_at': {'$lt': expiration_time},
        }},
    })

try:
    results = bulk.execute()
except pymongo.errors.InvalidOperation as err:
    if str(err) != 'No operations to execute':
        raise err

ref:
https://docs.mongodb.com/manual/reference/method/Bulk/
https://docs.mongodb.com/manual/reference/method/Bulk.find.arrayFilters/

Of course, you could also update the same document with multiple operations. However, it does not make sense.

from pymongo import UpdateOne
import bson

def _operations():
    if title = payload.get('title'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'title': title}})

    if location = payload.get('location'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'location': location}})      

    if pricing = payload.get('pricing'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'pricing': pricing}})

    if description = payload.get('description'):
        yield UpdateOne({'_id': bson.ObjectId(post_id)}, {'$set': {'description': description}})

    UpdateOne(
        {
            '_id': bson.ObjectId(post_id),
            'media.0': {'$exists': True},
            'title': {'$ne': None},
            'location': {'$ne': None},
            'pricing': {'$ne': None},
            'posted_at': {'$eq': None},
        },
        {'$set': {'posted_at': utils.utcnow()}},
    )

operations = list(_operations())
result = Post._get_collection().bulk_write(operations, ordered=True)
print(result.bulk_api_result)

ref:
https://api.mongodb.com/python/current/examples/bulk.html

Remove items from an array field of documents.

var userId = ObjectId("57a42a779f22bb6bcc434520");

db.getCollection('user').update(
    {'follows.user': userId},
    {'$pull': {'follows': {'user': userId}}},
    {'multi': true}
)

ref:
https://stackoverflow.com/questions/33594397/how-to-update-a-large-number-of-documents-in-mongodb-most-effeciently

MongoEngine In Python

ref:
http://docs.mongoengine.org/guide/index.html
http://docs.mongoengine.org/apireference.html

Define Collections

It seems every collection in MongoEngine must have a id field.

ref:
http://docs.mongoengine.org/guide/defining-documents.html

Define A Field With Default EmbeddedDocument

The behavior of setting an EmbeddedDocument class as default works differently with and without only().

class User(ab.models.ABTestingMixin, db.Document):
    class UserSettings(db.EmbeddedDocument):
        reply_price = db.IntField(min_value=0, default=500, required=True)
        preferences = db.ListField(db.StringField())

    email = db.EmailField(max_length=255)
    created_at = db.DateTimeField(default=utils.now)
    last_active = db.DateTimeField(default=utils.now)
    settings = db.EmbeddedDocumentField(UserSettings, default=UserSettings)

If the user does not have settings field in DB, here is the difference.

user = User.objects.get(username='gibuloto')
isinstance(user.settings, User.UserSettings) == True

user = User.objects.only('settings').get(username='gibuloto')
(user.settings is None) == True

user = User.objects.exclude('settings').get(username='gibuloto')
isinstance(user.settings, User.UserSettings) == True

Filter With Raw Queries

post = Post.objects \
    .no_dereference().only('posted_at') \
    .filter(__raw__={
        '_id': bson.ObjectId(post_id),
        'media.0': {'$exists': True},
        'title': {'$ne': None},
        'location': {'$ne': None},
        'gender': {'$ne': None},
        'pricing': {'$ne': None},
    }) \
    .modify(__raw__={'$min': {'posted_at': utils.utcnow()}}, new=True)

print(post.posted_at)

ref:
http://docs.mongoengine.org/guide/querying.html#raw-queries

Check If A Document Exists

Use .exists().

import datetime

now = datetime.datetime.now(datetime.timezone.utc)
if TagSchedule.objects.filter(user=user_id, tag=tag, started_at__gt=now).exists():
    return 'exists'

You have to use __raw__ if the field you want to query is a db.ListField(GenericEmbeddedDocumentField(XXX) field.

if MessagePackProduct.objects.filter(id=message_pack_id, __raw__={'purchases.user': g.user.id}).exists():
    return 'exists'

Update With Conditions Of Field Values

You could update the value of the field to a specified value if the specified value is less than or greater than the current value of the field. The $min and $max operators can compare values of different types.

Only set posted_at to current timestamp if its current value is None or absent.

Post.objects.update_one(
    {
        '_id': bson.ObjectId(post_id),
        'media.0': {'$exists': True},
        'title': {'$ne': None},
        'location': {'$ne': None},
        'gender': {'$ne': None},
        'pricing': {'$ne': None},
    },
    {
        '$min': {'posted_at': utils.utcnow()},
    },
)

ref:
https://docs.mongodb.com/manual/reference/operator/update/min/
https://docs.mongodb.com/manual/reference/operator/update/max/

Update An Array Field

Array update operators:

  • $: Acts as a placeholder to update the first element in an array for documents that matches the query condition.
  • $[]: Acts as a placeholder to update all elements in an array for documents that match the query condition.
  • $[<identifier>]: Acts as a placeholder to update elements in an array that match the arrayFilters condition.
  • $addToSet: Adds elements to an array only if they do not already exist in the set.
  • $push: Adds an item to an array.
  • $pop: Removes the first or last item of an array.
  • $pull: Removes all array elements that match a specified query.
  • $pullAll: Removes all matching values from an array.

ref:
https://docs.mongodb.com/manual/reference/operator/update-array/
http://docs.mongoengine.org/guide/querying.html#atomic-updates
http://thecodebarbarian.com/a-nodejs-perspective-on-mongodb-36-array-filters.html

Add an element in an array field.

user_id = '582ee32a5b9c861c87dc297e'
tag = 'my_tag'

updated = User.objects \
    .filter(id=user_id, tags__ne=tag) \
    .update_one(push__tags=tag)

updated = User.objects \
    .filter(id=user_id) \
    .update_one(add_to_set__schedules={
        'tag': tag,
         'nbf': datetime.datetime(2018, 6, 4, 0, 0),
        'exp': datetime.datetime(2019, 5, 1, 0, 0),
    })

Insert an element into an array at a certain position.

slot = 2
Post.objects.filter(id=post_id, media__id__ne=media_id).update_one(__raw__={
    '$push': {
        'media': {
            '$each': [{'id': bson.ObjectId(media_id)}],
            '$position': slot,
        }
    }
})

ref:
https://docs.mongodb.com/manual/reference/operator/update/position/
http://docs.mongoengine.org/guide/querying.html#querying-lists

Remove elements in an array field. It is also worth noting that update(pull__abc=xyz) always returns 1.

user_id = '582ee32a5b9c861c87dc297e'
tag = 'my_tag'

updated = User.objects \
    .filter(id=user_id) \
    .update_one(pull__tags=tag)

updated = User.objects \
    .filter(id=user_id) \
    .update_one(pull__schedules={'tag': tag})

Remove multiple embedded documents in an array field.

import bson

user_id = '5a66d5c2af9c462c617ce552'
tags = ['valid_tag_1', 'future_tag']

updated_result = User._get_collection().update_one(
    {'_id': bson.ObjectId(user_id)},
    {'$pull': {'schedules': {'tag': {'$in': tags}}}},
)
print(updated_result.raw_result)
# {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

ref:
https://stackoverflow.com/questions/28102691/pullall-while-removing-embedded-objects

You could also use add_to_set to add an item to an array only if it is not in the list, which always returns 1 if filter() matches any document. However, you are able to set full_result=True to get detail updated result.

update_result = User.objects.filter(id=user_id).update_one(
    add_to_set__tags=tag,
    full_result=True,
)
# {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

ref:
http://docs.mongoengine.org/guide/querying.html#atomic-updates

Update a multi-level nested array field. Yes, arrayFilters supports it.

ref:
https://docs.mongodb.com/manual/reference/operator/update/positional-filtered/
https://stackoverflow.com/questions/23577123/updating-a-nested-array-with-mongodb

Update an embedding document in an array field.

MessagePackProduct.objects \
    .filter(id='prod_CR1u34BIpDbHeo', skus__id='sku_CR23rZOTLhYprP') \
    .update(__raw__={
        '$set': {'skus.$': {'id': 'sku_CR23rZOTLhYprP', 'test': 'test'}}
    })

ref:
https://stackoverflow.com/questions/9200399/replacing-embedded-document-in-array-in-mongodb
https://docs.mongodb.com/manual/reference/method/db.collection.update/#db.collection.update

Update specific embedded documents with arrayFilters in an array field.

User data:

{
    "_id" : ObjectId("5a66d5c2af9c462c617ce552"),
    "username" : "gibuloto",
    "tags" : [
        "beta",
        "future_tag",
        "expired_tag"
    ],
    "schedules" : [
        {
            "tag" : "valid_tag",
            "nbf" : ISODate("2018-05-01T16:00:00.000Z"),
            "exp" : ISODate("2020-06-04T16:00:00.000Z")
        },
        {
            "tag" : "future_tag",
            "nbf" : ISODate("2020-01-28T16:00:00.000Z"),
            "exp" : ISODate("2020-12-14T16:00:00.000Z")
        },
        {
            "tag" : "expired_tag",
            "nbf" : ISODate("2016-02-12T16:00:00.000Z"),
            "exp" : ISODate("2016-04-21T16:00:00.000Z")
        }
    ],
}

It is worth noting that <identifier> in $arrayFilters can only contain lowercase alphanumeric characters.

import bson

user_id = '5a66d5c2af9c462c617ce552'
tags = ['from_past_to_future']

updated_result = User._get_collection().update_one(
    {'_id': bson.ObjectId(user_id)},
    {
        '$addToSet': {'tags': {'$each': tags}},
        '$unset': {'schedules.$[schedule].nbf': True},
    },
    array_filters=[{'schedule.tag': {'$in': [tag for tag in tags]}}],
)
print(updated_result.raw_result)
# {'n': 1, 'nModified': 1, 'ok': 1.0, 'updatedExisting': True}

ref:
https://docs.mongodb.com/master/reference/operator/update/positional-filtered/

Update A Dictionary Field

Set a key/value in a dictionary field.

tutorial.data = {
    "price_per_message": 1200,
    "inbox": []
}

new_inbox = [
    {
        "id": "5af118c598eacb528e8fb8f9",
        "sender": "5a13239eaf9c462c611510fc"
    },
    {
        "id": "5af1117298eacb212a8fb8e9",
        "sender": "5a99554be9a21d5ff38b8ca5"
    }
]
tutorial.update(set__data__inbox=new_inbox)

ref:
https://stackoverflow.com/questions/21158028/updating-a-dictfield-in-mongoengine

Upsert: Update Or Create

You must use upsert=true with uniquely indexed fields. If you don't need the modified document, you should just use update_one(field1=123, field2=456, upsert=True).

Additionally, remember that modify() always reloads the whole object even the original one only loads specific fields with only(). Try to avoid using document.DB_QUERY_METHOD(), and using User.objects.filter().only().modify() or User.objects.filter().update() when it is possible.

tag_schedule = TagSchedule.objects \
    .filter(user=user_id, tag='vip') \
    .modify(
        started_at=started_at,
        ended_at=ended_at,
        upsert=True
    )

user = User.objects \
    .filter(id=user.id, tutorials__buy_diamonds__version=None) \
    .modify(set__tutorials__buy_diamonds__version='v1')

updated = User.objects \
    .filter(user=user_id, tag=tag) \
    .update_one(
        push__followers=new_follower,
    )

ref:
https://docs.mongodb.com/manual/reference/method/db.collection.update/#update-with-unique-indexes
http://docs.mongoengine.org/apireference.html#mongoengine.queryset.QuerySet.modify
http://docs.mongoengine.org/apireference.html#mongoengine.queryset.QuerySet.update_one

Upsert: Get Or Create

buy_diamonds = BuyDiamonds.objects.filter(user_id=user.id).upsert_one()

ref:
http://docs.mongoengine.org/apireference.html#mongoengine.queryset.QuerySet.upsert_one

Store Files On GridFS

# models.py
class User(db.Document):
    username = db.StringField()
    image = db.ImageField(collection_name='user.images')
# tasks.py
import bson
import gridfs
import mongoengine

@celery.shared_task(bind=True, ignore_result=True)
def gridfs_save(task, user_id, format='JPEG', raw_data: bytes=None, **kwargs):
    image_id = None

    if raw_data is None:
        user = User.objects.only('image').get(id=user_id)
        if user.image.grid_id:
            image_id, raw_data = user.image.grid_id, user.image.read()

    if not raw_data:
        return

    gf = gridfs.GridFS(mongoengine.connection.get_db(), User.image.collection_name)

    with io.BytesIO(raw_data) as raw_image:
        with Image.open(raw_image) as image:
            image = image.convert('RGB')
            with io.BytesIO() as buffer:
                image.save(buffer, format=format, quality=80, **kwargs)
                buffer.seek(0)
                grid_id = gf.put(buffer, format=format, width=image.width, height=image.height, thumbnail_id=None)

    # NOTE: If function was passed with raw_data, only override if ID is the same as the read
    query = mongoengine.Q(id=user_id)
    if image_id:
        query = query & mongoengine.Q(image=image_id)

    user = User.objects.only('image').filter(query).modify(
        __raw__={'$set': {'image': grid_id}},
        new=False,
    )

    def cleanup():
        # Delete the old image
        if user and user.image:
            yield user.image.grid_id

        # The user image was already changed before the scheduled optimization took place
        # Drop the optimized image
        if user is None and image_id:
            yield image_id

    gridfs_delete.apply_async(kwargs=dict(
        collection=User.image.collection_name,
        grid_ids=list(cleanup()),
    ))

@celery.shared_task(bind=True, ignore_result=True)
def gridfs_delete(task, collection, grid_ids):
    gf = gridfs.GridFS(mongoengine.connection.get_db(), collection)
    for grid_id in grid_ids:
        gf.delete(bson.ObjectId(grid_id))

ref:
http://docs.mongoengine.org/guide/gridfs.html

Store Datetime

MongoDB stores datetimes in UTC.

ref:
https://docs.mongodb.com/manual/reference/method/Date/

Two-phase Commit

The easiest way to think about 2-phase commit is idempotency, i.e., if you run a update many times, the results would "be the same": initial -> pending -> applied -> done.

ref:
https://docs.mongodb.com/manual/tutorial/perform-two-phase-commits/

Aggregation Pipeline

  • $match: Filters documents.
  • $project: Modifies document fields.
  • $addFields: Adds or overrides document fields.
  • $group: Groups documents by fields.
  • $lookup: Joins another collection.
  • $replaceRoot: Promotes an embedded document field to the top level and replace all other fields.
  • $unwind: Expanses an array field into multiple documents along with original documents.
  • $facet: Processes multiple pipelines within one stage and output to different fields.

There are special system variables, for instance, $$ROOT, $$REMOVE, $$PRUNE, which you could use in some stages of the aggregation pipeline.

ref:
https://docs.mongodb.com/manual/reference/aggregation-variables/#system-variables

Return Date As Unix Timestamp

import datetime

def stages():
    yield {'$project': {
        'createdAt': {'$floor': {'$divide': [{'$subtract': ['$$created', datetime.datetime.utcfromtimestamp(0)]}, 1000]}},
    }}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://stackoverflow.com/questions/39274311/convert-iso-date-to-timestamp-in-mongo-query

Match Multiple Conditions Which Store In An Array Fields

db.getCollection('feature.promotions').insert({
    "name": "女 / 六月排行榜:寶石獵人",
    "nbf": ISODate("2018-05-31 16:00:00.000Z"),
    "exp": ISODate("2018-06-30 15:59:00.001Z"),
    "positions": {
        "discover": {
            "urls": [
                "https://swag.live/promo/events/2018/Jun/female/banner.html"
            ]
        }
    },
    "requirements" : [
        {
            // users who like women and their app version is greater than v2.21
            "preferences" : [
                "gender:female"
            ],
            "version_major_min": 2.0,
            "version_minor_min": 21.0
        },
        {
            // female CPs
            "tags" : [
                "stats",
                "gender:female"
            ]
        }
    ]
});
import werkzeug

user_agent = werkzeug.UserAgent('swag/2.25.1 (iPhone; iOS 11.4.1; Scale/2.00; com.live.swag.enterprise; zh-tw)')
user_preferences = ['gender:female', 'gender:male']
user_tags = ['beta', 'vip']
user_platforms = [user_agent.platform]

def stages():
    now = utils.utcnow()

    yield {'$match': {
        '$and': [
            {'nbf': {'$lte': now}},
            {'exp': {'$gt': now}},
            {'requirements': {'$elemMatch': {
                'preferences': {'$not': {'$elemMatch': {'$nin': user_preferences}}},
                'tags': {'$not': {'$elemMatch': {'$nin': user_tags}}},
                'platforms': {'$not': {'$elemMatch': {'$nin': user_platforms}}},
                '$or': [
                    {'$and': [
                        {'version_major_min': {'$lte': user_agent.version.major}},
                        {'version_minor_min': {'$lte': user_agent.version.minor}},
                    ]},
                    {'$and': [
                        {'version_minor_min': {'$exists': False}},
                        {'version_minor_min': {'$exists': False}},
                    ]},
                ],
            }}},
        ],
    }}
    yield {'$project': {
        'name': True,
        'nbf': True,
        'exp': True,
        'positions': {'$objectToArray': '$positions'},
    }}
    yield {'$unwind': '$positions'}
    yield {'$sort': {
        'exp': 1,
    }}
    yield {'$project': {
        '_id': False,
        'name': True,
        'position': '$positions.k',
        'url': {'$arrayElemAt': ['$positions.v.urls', 0]},
        'startedAt': {'$floor': {'$divide': [{'$subtract': ['$nbf', constants.UNIX_EPOCH]}, 1000]}},
        'endedAt': {'$floor': {'$divide': [{'$subtract': ['$exp', constants.UNIX_EPOCH]}, 1000]}},
    }}
    yield {'$group': {
        '_id': '$position',
        'items': {'$push': '$$ROOT'},
    }}

try:
    docs = Promotion.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    docs = list(docs)

ref:
https://docs.mongodb.com/manual/reference/operator/query/in/
https://docs.mongodb.com/manual/reference/operator/query/nin/
https://docs.mongodb.com/manual/reference/operator/aggregation/setIsSubset/

Do Distinct With $group

def stages():
    yield {'$match': {
        'tags': 'some_tag',
    }}
    yield {'$unwind': '$unlocks'}
    yield {'$replaceRoot': {'newRoot': '$unlocks'}}
    yield {'$match': {
        '_cls': 'MessagePackUnlock',
    }}
    yield {'$group': {
        '_id': '$user',
        'timestamp': {'$first': '$timestamp'},
    }}

for unlock in MessagePackMessage.objects.aggregate(*stages()):
    tasks.offline_purchase_pack.apply(kwargs=dict(
        user_id=unlock['_id'],
        message_pack_id=message_pack.id,
        timestamp=unlock['timestamp'],
    ))

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/group/

Slice Items In Each $group

import random

def stages():
    yield {'$match': {'tags': {'$regex': '^badge:'}}}
    yield {'$unwind': {'path': '$tags', 'includeArrayIndex': 'index'}}
    yield {'$match': {'tags': {'$regex': '^badge:'}}}
    yield {'$project': {'_id': True, 'tag': '$tags', 'index': {'$mod': ['$index', random.random()]}}}
    yield {'$sort': {'index': 1}}
    yield {'$group': {'_id': '$tag', 'users': {'$addToSet': '$_id'}}}
    yield {'$project': {'_id': True, 'users': {'$slice': ['$users', 1000]}}}

docs = User.objects.aggregate(*stages())
for doc in docs:
    badge, user_ids = doc['_id'], doc['users']

Collect Items With $group And $addToSet

User data:

{
    "_id" : ObjectId("5a66d5c2af9c462c617ce552"),
    "username" : "gibuloto",
    "tags" : [ 
        "beta"
    ],
    "schedules" : [ 
        {
            "tag" : "stats",
            "nbf" : ISODate("2018-02-01T16:00:00.000Z"),
            "exp" : ISODate("2018-08-12T16:00:00.000Z")
        }, 
        {
            "tag" : "vip",
            "nbf" : ISODate("2018-05-13T16:00:00.000Z"),
            "exp" : ISODate("2018-05-20T16:00:00.000Z")
        }
    ]
}
def stages():
    now = utils.utcnow()

    yield {'$match': {
        'schedules': {'$elemMatch': {
            'nbf': {'$lte': now},
            'exp': {'$gte': now}
        }}
    }}
    yield {'$unwind': '$schedules'}
    yield {'$match': {
        'schedules.nbf': {'$lte': now},
        'schedules.exp': {'$gte': now}
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'username': True,
        'tag': '$schedules.tag',
        'nbf': '$schedules.nbf',
        'exp': '$schedules.exp'
    }}
    yield {'$group': {
        '_id': '$id',
        'tags': {'$addToSet': '$tag'},
    }}

for user_tag_schedule in User.objects.aggregate(*stages()):
    print(user_tag_schedule)

# output:
# {'_id': ObjectId('579b9387b7af8e1fd1635da9'), 'tags': ['stats']}
# {'_id': ObjectId('5a66d5c2af9c462c617ce552'), 'tags': ['chat', 'vip']}

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/group/

Project A New Field Based On Whether Elements Exist In Another Array Field

Use $addFields with $cond.

def stages():
    user_preferences = g.user.settings.preferences or ['gender:female']
    yield {'$match': {
        'gender': {'$in': [prefix_gender.replace('gender:', '') for prefix_gender in user_preferences]}
    }}

    yield {'$addFields': {
        'isPinned': {'$cond': {
            'if': {'$in': [constants.tags.HIDDEN, '$badges']},
            'then': True,
            'else': False,
        }},
    }}
    yield {'$sort': {
        'isPinned': -1,
        'posted_at': -1,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'author': '$author',
        'title': '$title',
        'location': '$location',
        'postedAt': {'$floor': {'$divide': [{'$subtract': ['$posted_at', constants.UNIX_EPOCH]}, 1000]}},
        'viewCount': '$view_count',
        'commentCount': {'$size': {'$ifNull': ['$comments', []]}},
        'badges': '$badges',
        'isPinned': '$isPinned',
    }}

try:
    results = Post.objects.aggregate(*stages()).next()
except StopIteration:
    return Response(status=http.HTTPStatus.NOT_FOUND)

ref:
https://stackoverflow.com/questions/16512329/project-new-boolean-field-based-on-element-exists-in-an-array-of-a-subdocument
https://docs.mongodb.com/manual/reference/operator/aggregation/project/
https://docs.mongodb.com/manual/reference/operator/aggregation/addFields/
https://docs.mongodb.com/manual/reference/operator/aggregation/cond/

Project And Filter Out Elements Of An Array With $filter

Elements in details might have no value field.

def stages():
    yield {'$match': {
        '_id': bson.ObjectId(post_id),
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'author': '$author',
        'title': '$title',
        'location': '$location',
        'postedAt': {'$floor': {'$divide': [{'$subtract': ['$posted_at', constants.UNIX_EPOCH]}, 1000]}},
        'viewCount': '$view_count',
        'commentCount': {'$size': '$comments'},
        'details': [
            {'key': 'gender', 'value': '$gender'},
            {'key': 'pricing', 'value': '$pricing'},
            {'key': 'lineId', 'value': {'$ifNull': ['$lineId', None]}},
            {'key': 'description', 'value': {'$ifNull': ['$description', None]}},
        ],
    }}
    yield {'$addFields': {
        'details': {
            '$filter': {
                'input': '$details',
                'as': 'detail',
                'cond': {'$ne': ['$$detail.value', None]},
            }
        }
    }}

try:
    post = next(Post.objects.aggregate(*stages()))
except StopIteration:
    return Response(status=http.HTTPStatus.NOT_FOUND)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/filter/#exp._S_filter
https://docs.mongodb.com/manual/reference/operator/aggregation/addFields/

Project Specific Fields Of Elements Of An Array With $map

def stages():
    yield {'$match': {
        '_id': bson.ObjectId(post_id),
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'author': '$author',
        'title': '$title',
        'location': '$location',
        'postedAt': {'$floor': {'$divide': [{'$subtract': ['$posted_at', constants.UNIX_EPOCH]}, 1000]}},
        'viewCount': '$view_count',
        'commentCount': {'$size': '$comments'},
        'details': [
            {'key': 'gender', 'value': '$gender'},
            {'key': 'pricing', 'value': '$pricing'},
            {'key': 'lineId', 'value': {'$ifNull': ['$lineId', None]}},
            {'key': 'description', 'value': {'$ifNull': ['$description', None]}},
        ],
        'media': {
            '$map': {
                'input': '$media',
                'as': 'transcoded_media',
                'in': {
                    'mimetype': '$$transcoded_media.mimetype',
                    'dash': '$$transcoded_media.presets.dash',
                    'hls': '$$transcoded_media.presets.hls',
                    'thumbnail': '$$transcoded_media.thumbnail',
                }
            }
        },
    }}
    yield {'$addFields': {
        'details': {
            '$filter': {
                'input': '$details',
                'as': 'detail',
                'cond': {'$ne': ['$$detail.value', None]},
            }
        }
    }}

try:
    post = next(Post.objects.aggregate(*stages()))
except StopIteration:
    return Response(status=http.HTTPStatus.NOT_FOUND)

ref:
https://stackoverflow.com/questions/33831665/how-to-project-specific-fields-from-a-document-inside-an-array

Do Advanced $project With $let

If you find youself want to do $project twice to tackle some fields, you should use $let.

def stages():
    yield {'$match': {
        'purchases.user': g.user.id,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'purchasedAt': {
            '$let': {
                'vars': {
                    'purchase': {
                        '$arrayElemAt': [
                            {
                                '$filter': {
                                    'input': '$purchases',
                                    'as': 'purchase',
                                    'cond': {
                                        '$and': [
                                            {'$eq': ['$$purchase.user', g.user.id]},
                                        ],
                                    },
                                },
                            },
                            0,
                        ],
                    },
                },
                'in': '$$purchase.timestamp',
            },
        },
    }}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/let/

Deconstruct An Array Field With $unwind And Query Them With $match

def stages():
    category_tag = 'category:user'
    currency = 'usd'
    platform = 'ios'

    yield {'$match': {
        'active': True,
        'tags': category_tag,
        'total': {'$gt': 0},
        'preview_message': {'$exists': True},
    }}
    yield {'$unwind': '$skus'}
    yield {'$match': {
        'skus.attributes.platform': platform,
        'skus.attributes.currency': currency,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'caption': True,
        'description': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'sku': '$skus',
        'created_at': True,
        'is_purchased': {'$in': [g.user.id, {'$ifNull': ['$purchases.user', []]}]},
    }}
    yield {'$sort': {'is_purchased': 1, 'created_at': -1}}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/match/
https://docs.mongodb.com/manual/reference/operator/aggregation/unwind/
https://docs.mongodb.com/manual/reference/operator/aggregation/project/

Query The First Element In An Array Field With $arrayElemAt And $filter

def stages():
    category_tag = 'category:user'
    currency = 'usd'
    platform = 'ios'

    yield {'$match': {
        'active': True,
        'tags': category_tag,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'caption': True,
        'description': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'preview_message': True,
        'metadata': True,
        'created_at': True,
        'updated_at': True,
        'active': True,
        'sku': {
            '$ifNull': [
                {
                    '$arrayElemAt': [
                        {
                            '$filter': {
                                'input': '$skus',
                                'as': 'sku',
                                'cond': {
                                    '$and': [
                                        {'$eq': ['$$sku.currency', currency]},
                                        {'$eq': ['$$sku.attributes.platform', platform]},
                                    ]
                                }
                            },
                        },
                        0
                    ]
                },
                None
            ],
        },
        'tags': True,
        'total': True,
        'is_bought': {'$in': [g.user.id, {'$ifNull': ['$purchases.user', []]}]},
    }}
    yield {'$sort': {'is_bought': 1, 'created_at': -1}}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/master/reference/operator/aggregation/filter/
https://stackoverflow.com/questions/3985214/retrieve-only-the-queried-element-in-an-object-array-in-mongodb-collection

Join Another Collection Using $lookup

def stages():
    yield {'$match': {
        'tags': 'pack:prod_CR1u34BIpDbHeo',
    }}
    yield {'$lookup': {
        'from': 'user',
        'localField': 'sender',
        'foreignField': '_id',
        'as': 'sender_data',
    }}
    yield {'$unwind': '$sender_data'}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'sender': {
            'id': '$sender_data._id',
            'username': '$sender_data.username',
        },
        'caption': True,
        'posted_at': True,
    }}
    yield {'$sort': {'posted_at': -1}}

try:
    docs = Message.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/
https://thecodebarbarian.com/a-nodejs-perspective-on-mongodb-36-lookup-expr

Join Another Collection With Multiple Conditions Using pipeline in $lookup

To access the let variables in the $lookup pipeline, you could only use the $expr operator.

var start = ISODate('2018-09-22T00:00:00.000+08:00');

db.getCollection('feature.shop.order').aggregate([
    {'$match': {
        'payment.timestamp': {'$gte': start},
        'status': {'$in': ['paid']},
    }},
    {'$lookup': {
        'from': 'user',
        'localField': 'customer',
        'foreignField': '_id',
        'as': 'customer_data',
    }},
    {'$unwind': '$customer_data'},
    {'$project': {
        'variation': '$customer_data.experiments.message_unlock_price.variation',
        'amount_normalized': {'$divide': ['$amount', 100.0]},
    }},
    {'$addFields': {
        'amount_usd': {'$multiply': ['$amount_normalized', 0.033]},
    }},
    {'$group': {
       '_id': '$variation',
       'purchase_amount': {'$sum': '$amount_usd'},
       'paid_user_count': {'$sum': 1},
    }},
    {'$lookup': {
        'from': 'user',
        'let': {
            'variation': '$_id',
        },
        'pipeline': [
            {'$match': {
                'last_active': {'$gte': start},
                'experiments': {'$exists': true},
            }},
            {'$match': {
                '$expr': {
                    '$and': [
                         {'$eq': ['$experiments.message_unlock_price.variation', '$$variation']},
                    ],
                },
            }},
            {'$group': {
               '_id': '$experiments.message_unlock_price.variation',
               'count': {'$sum': 1},
            }},
        ],
        'as': 'variation_data',
    }},
    {'$unwind': '$variation_data'},
    {'$project': {
        '_id': 1,
        'purchase_amount': 1,
        'paid_user_count': 1,
        'total_user_count': '$variation_data.count',
    }},
    {'$addFields': {
        'since': start,
        'arpu': {'$divide': ['$purchase_amount', '$total_user_count']},
        'arppu': {'$divide': ['$purchase_amount', '$paid_user_count']},
    }},
    {'$sort': {'_id': 1}},
]);

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#join-conditions-and-uncorrelated-sub-queries

or

def stages():
    yield {'$match': {'_id': bson.ObjectId(message_id)}}
    yield {'$limit': 1}
    yield {'$project': {
        '_cls': 1,
        'sender': 1,
        'unlocks': 1,
    }}
    yield {'$unwind': '$unlocks'}
    yield {'$match': {
        'unlocks.user': bson.ObjectId(user_id),
        'unlocks.amount': {'$gt': 0},
    }}
    yield {'$lookup': {
        'from': 'user',
        'let': {
            'sender': '$sender',
            'unlocker': '$unlocks.user',
        },
        'pipeline': [
            {'$match': {
                '$expr': {
                    '$or': [
                        {'$eq': ['$_id', '$$sender']},
                        {'$eq': ['$_id', '$$unlocker']}
                    ]
                }
            }}
        ],
        'as': 'users',
    }}
    yield {'$addFields': {
        'sender': {'$arrayElemAt': ['$users', 0]},
        'unlocker': {'$arrayElemAt': ['$users', 1]},
    }},
    yield {'$project': {
        '_id': 0,
        '_cls': 1,
        'id': '$_id',
        'sender': {
            'id': '$sender._id',
            'username': '$sender.username',
        },
        'unlocker': {
            'id': '$unlocker._id',
            'username': '$unlocker.username',
        },
        'amount': '$unlocks.amount',
    }}

try:
    context = Message.objects.aggregate(*stages()).next()
except StopIteration:
    pass

ref:
https://stackoverflow.com/questions/37086387/multiple-join-conditions-using-the-lookup-operator
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#specify-multiple-join-conditions-with-lookup

Count Documents In Another Collection With $lookup (JOIN)

def stages():
    category_tag = f'category:{category}'
    yield {'$match': {
        'active': True,
        'tags': category_tag,
    }}
    yield {'$addFields': {
        'message_pack_id_tag': {'$concat': ['pack:', '$_id']},
    }}
    yield {'$lookup': {
        'from': 'message',
        'localField': 'message_pack_id_tag',
        'foreignField': 'tags',
        'as': 'total',
    }}
    yield {'$addFields': {
        'total': {'$size': '$total'}
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'total': True,
    }}

try:
    docs = MessagePackProduct.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#equality-match

Use $lookup as findOne() Which Returns An Object

Use $lookup and $unwind.

import bson

def stages():
    yield {'$match': {'_id': bson.ObjectId(gift_id)}}
    yield {'$limit': 1}
    yield {'$lookup': {
        'from': 'user',
        'localField': 'sender',
        'foreignField': '_id',
        'as': 'sender',
    }}
    yield {'$unwind': '$sender'}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'sender': {
            'id': '$sender._id',
            'username': '$sender.username',
        },
        'product_id': '$product._id',
        'sent_at': '$sent_at',
        'amount': '$cost.amount',
    }}

try:
    _context = Gift.objects.aggregate(*stages()).next()
except StopIteration:
    pass

ref:
https://stackoverflow.com/questions/37691727/how-to-use-mongodbs-aggregate-lookup-as-findone

Collapse Documents In An Array

def stages():
    yield {'$match': {
        'tags': f'tutorial:buy-diamonds:v1',
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'caption.text': True,
        'sender': True,
        'media.type': '$media.mimetype',
    }}
    yield {'$facet': {
        'inbox': [
            {'$sort': {'created_at': -1}},
            {'$limit': 10}
        ],
    }}
    yield {'$project': {
        'inbox': True,
        'required_unlock_count': {'$literal': 5},
        'price_per_message': {'$literal': 1200},
    }}

try:
    result = Message.objects.aggregate(*stages()).next()
except StopIteration:
    result = {}

JSON output:

{
    "inbox": [
        {
            "caption": {
                "text": "fuck yeah"
            },
            "id": "5aaba1e9593950337a90dcb3",
            "media": {
                "type": "video/mp4"
            },
            "sender": "5a66d5c2af9c462c617ce552"
        },
        {
            "caption": {
                "text": "test"
            },
            "id": "5ad549276b2c362a4efe5e21",
            "media": {
                "type": "image/jpeg"
            },
            "sender": "5a66d5c2af9c462c617ce552"
        }
    ],
    "price_per_message": 1200,
    "required_unlock_count": 5
}

Do Pagination With $facet And $project

def stages():
    # normal query
    yield {'$match': {
        'purchases.user': g.user.id,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'created_at': True,
        'meta': {
            'revision': '$revision',
            'tags': '$tags',
        },
    }}
    yield {'$sort': {'created_at': -1}}

    # pagination
    page = 0
    limit = 10
    yield {'$facet': {
        'meta': [
            {'$count': 'total'},
        ],
        'objects': [
            {'$skip': page * limit},
            {'$limit': limit},
        ]
    }}
    # JSON output:
    # {
    #    "meta": [
    #       {"total": 2}
    #    ],
    #    "objects": [
    #       {
    #          "id": "prod_CR1u34BIpDbHeo",
    #          "name": "Product Name 2"
    #       },
    #       {
    #          "id": "prod_Fkhf9JFK3Rdgk9",
    #          "name": "Product Name 1"
    #       }
    #    ]
    # }
    yield {'$project': {
        'total': {'$let': {
            'vars': {
                'meta': {'$arrayElemAt': ['$meta', 0]},
            },
            'in': '$$meta.total',
        }},
        'objects': True,
    }}
    # JSON output:
    # {
    #    "total": 2,
    #    "objects": [
    #       {
    #          "id": "prod_CR1u34BIpDbHeo",
    #          "name": "Product Name 2"
    #       },
    #       {
    #          "id": "prod_Fkhf9JFK3Rdgk9",
    #          "name": "Product Name 1"
    #       }
    #    ]
    # }

try:
    output = MessagePackProduct.objects.aggregate(*stages()).next()
except StopIteration:
    output = {}
else:
    print(output)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/facet/
https://docs.mongodb.com/manual/reference/operator/aggregation/project/

Perform $facet + $project => Unwrap with $unwind => Do $facet + $project Again

def stages():
    yield {'$match': {
        'purchases.user': g.user.id,
    }}
    yield {'$project': {
        '_id': False,
        'id': '$_id',
        'name': True,
        'image': {
            '$ifNull': [{'$arrayElemAt': ['$images', 0]}, None],
        },
        'created_at': True,
    }}
    yield {'$sort': {'created_at': -1}}

    # pagination
    page = 0
    limit = 10
    yield {'$facet': {
        'meta': [
            {'$count': 'total'},
        ],
        'objects': [
            {'$skip': page * limit},
            {'$limit': limit},
        ]
    }}
    yield {'$project': {
        'total': {'$let': {
            'vars': {
                'meta': {'$arrayElemAt': ['$meta', 0]},
            },
            'in': '$$meta.total',
        }},
        'objects': True,
    }}

    # do $lookup after the pagination
    yield {'$unwind': '$objects'}
    yield {'$addFields': {
        'objects.message_pack_id_tag': {'$concat': ['pack:', '$objects.id']},
    }}
    yield {'$lookup': {
        'from': 'message',
        'localField': 'objects.message_pack_id_tag',
        'foreignField': 'tags',
        'as': 'objects.total',
    }}
    yield {'$addFields': {
        'objects.total': {'$size': '$objects.total'}
    }}

    # re-wrap into the pagination structure
    yield {'$facet': {
        'total_list': [
            {'$project': {
                'total': True,
            }},
        ],
        'objects': [
            {'$replaceRoot': {'newRoot': '$objects'}},
        ]
    }}
    yield {'$project': {
        'total': {'$let': {
            'vars': {
                'meta': {'$arrayElemAt': ['$total_list', 0]},
            },
            'in': '$$meta.total',
        }},
        'objects': True,
    }}

try:
    output = MessagePackProduct.objects.aggregate(*stages()).next()
except StopIteration:
    output = {}
else:
    print(output)

Do $group First To Reduce Numbers Of $lookup Calls

def stages():
    yield {'$match': {
        'tags': f'pack:{message_pack_id}',
    }}
    yield {'$group': {
        '_id': '$sender',
        'messages': {'$push': '$$ROOT'},
    }}
    yield {'$lookup': {
        'from': 'user',
        'localField': '_id',
        'foreignField': '_id',
        'as': 'sender_data',
    }}
    yield {'$unwind': '$messages'}
    yield {'$project': {
        '_id': False,
        'id': '$messages._id',
        'caption': {
            'text': '$messages.caption.text',
            'y': '$messages.caption.y',
        },
        'sender': {
            'id': {'$arrayElemAt': ['$sender_data._id', 0]},
            'username': {'$arrayElemAt': ['$sender_data.username', 0]},
        },
    }}

try:
    docs = Message.objects.aggregate(*stages())
except StopIteration:
    docs = []
else:
    for doc in docs:
        print(doc)

ref:
https://docs.mongodb.com/manual/reference/operator/aggregation/group/

Useful Tools

Backup

$ mongodump -h  127.0.0.1:27017 --oplog -j=8 --gzip --archive=/data/mongodump.tar.gz

ref:
https://docs.mongodb.com/manual/reference/program/mongodump/

Restore

$ mongorestore --drop --gzip --archive=2018-08-12T03.tar.gz

This kind of error typically indicates some sort of issue with data corruption, which is often caused by problems with the underlying storage device, file system or network connection.

restoring indexes for collection swag.message from metadata
Failed: swag.message: error creating indexes for swag.message: createIndex error: BSONElement: bad type -47

ref:
https://docs.mongodb.com/manual/reference/program/mongorestore/

Profiling

You could also set the profiling level to 2 to record every query.

db.setProfilingLevel(2);

db.getCollection('system.profile').find({
    'ns': { 
        '$nin' : ['swag.system.profile','swag.system.indexes', 'swag.system.js', 'swag.system.users']
    }
}).limit(5).sort({'ts': -1}).pretty();

ref:
https://docs.mongodb.com/manual/tutorial/manage-the-database-profiler/
https://stackoverflow.com/questions/15204341/mongodb-logging-all-queries

$ pip install mongotail

# set the profiling level
$ mongotail 127.0.0.1:27017/swag -l 2

# tail logs
$ mongotail 127.0.0.1:27017/swag -f -m -f

ref:
https://github.com/mrsarm/mongotail

Monitoring

$ mongotop
$ mongostat

ref:
https://docs.mongodb.com/manual/reference/program/mongotop/
https://docs.mongodb.com/manual/reference/program/mongostat/

$ pip install mtools

$ mloginfo mongod.log

ref:
https://github.com/rueckstiess/mtools