Calculate the similarity of two vectors

scipy.spatial.distance
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html

sklearn.metrics
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

Distance

Euclidean distance 歐幾里德距離

from sklearn.metrics.pairwise import euclidean_distances

euclidean_distances([0, 0, 0, 0], [0, 0, 0, 0])
# array([[ 0.]])

euclidean_distances([1, 0, 1, 0], [1, 0, 1, 0])
# array([[ 0.]])

euclidean_distances([0, 1, 0, 1], [1, 0, 1, 0])
# array([[ 2.]])

ref:
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.euclidean_distances.html

Manhattan Distance 曼哈頓距離

from sklearn.metrics.pairwise import manhattan_distances

manhattan_distances([0, 0, 0, 0], [0, 0 , 0, 0])
# array([[ 0.]])

manhattan_distances([1, 1, 1, 0], [1, 0, 0, 0])
# array([[ 2.]])

manhattan_distances([0, 1, 0, 1], [1, 0, 1, 0])
# array([[ 4.]])

ref:
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.manhattan_distances.html

Similarity

Cosine similarity 餘弦相似度

from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.pairwise import cosine_distances
from sklearn.metrics.pairwise import pairwise_distances
from scipy.spatial.distance import pdist, squareform

cosine_similarity(matrix) == \
1 - cosine_distances(matrix) == \
1 - pairwise_distances(matrix, metric='cosine') == \
1 - squareform(pdist(matrix, 'cosine'))

cosine_similarity([0, 0, 0, 0], [0, 0, 0, 0])
# array([[ 0.]])

cosine_similarity([1, 0, 0, 0], [1, 0, 0, 0])
# array([[ 1.]])

cosine_similarity([1, 0, 1, 0], [0, 1, 0, 1])
# array([[ 0.]])

cosine_similarity([1, 0, 0, 1], [1, 0, 0, 0])
# array([[ 0.70710678]])

cosine_similarity([1, 0, 0, 1], [1, 0, 1, 0])
# array([[ 0.5]])

ref:
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_distances.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_distances.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html

Jaccard similarity coefficient score

from sklearn.metrics import jaccard_similarity_score

jaccard_similarity_score([0, 0, 0, 0], [0, 0, 0, 0])
# 1.0

jaccard_similarity_score([0, 0, 0, 0], [1, 0, 0, 0])
# 0.75

jaccard_similarity_score([1, 0, 0, 0], [1, 0, 0, 0])
# 1.0

jaccard_similarity_score([1, 0, 1, 0], [0, 1, 0, 1])
# 0.0

ref:
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_similarity_score.html

http://datascience.stackexchange.com/questions/5121/applications-and-differences-for-jaccard-similarity-and-cosine-similarity

Log-Likelihood similarity

TODO

Pearson correlation coefficient 皮爾森相關係數

It has a value between +1 and −1 inclusive, where 1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative linear correlation. You should only calculate Pearson Correlations when the number of items in common between two users is > 1, preferably greater than 5/10. Only calculate the Pearson Correlation for two users where they have commonly rated items.

For hign-dimensional binary attributes, the performances of Pearson correlation coefficient and Cosine similarity
are better than Jaccard similarity coefficient score.

from scipy.stats import pearsonr

pearsonr([1, 0, 1, 1], [0, 0, 0, 0])
# (nan, 1.0)

pearsonr([1, 0, 1, 1], [1, 0, 0, 0])
# (0.33333333333333331, 0.66666666666666607)

pearsonr([1, 0, 1, 0], [0, 1, 0, 1])
# (-1.0, 0.0)

ref:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
http://stackoverflow.com/questions/11429604/how-is-nan-handled-in-pearson-correlation-user-user-similarity-matrix-in-a-recom

Dissimilarity

Dice dissimilarity

from scipy.spatial.distance import dice
import numpy as np

v1 = np.array([0, 0, 0, 0])
v2 = np.array([0, 0, 0, 0])

try:
    sim = 1.0 - dice(v1.astype(bool), v2.astype(bool))
except ZeroDivisionError:
    sim = 0

ref:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.dice.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.kulsinski.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.sokalsneath.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.yule.html