Spark ML cookbook (Scala)

Spark ML cookbook (Scala)

Scala is the first class citizen language for interacting with Apache Spark, but it's difficult to learn. This article is mostly about Spark ML - the new Spark Machine Learning library which was rewritten in DataFrame-based API.

Convert a String Categorical Feature into Numeric One

StringIndexer converts labels (categorical values) into numbers (0.0, 1.0, 2.0 and so on) which ordered by label frequencies, the most frequnet label gets 0. This method is able to handle unseen labels with optional strategies.

StringIndexer's inputCol accepts string, numeric and boolean types.

val df1 = spark.createDataFrame(Seq(
    (1, "Python"),
    (2, "C++"),
    (3, "C++"),
    (4, "JavaScript"),
    (5, "Python"),
    (6, "Python"),
    (7, "Go")
BinaryClassificationEvaluator
)).toDF("repo_id", "repo_language")

val df2 = spark.createDataFrame(Seq(
    (1, "Python"),
    (2, "C++"),
    (3, "C++"),
    (4, "JavaScript"),
    (5, "Python"),
    (6, "Python"),
    (7, "Go"),
    (8, "JavaScript"),
    (9, "Brainfuck"),
    (10, "Brainfuck"),
    (11, "Red")
)).toDF("repo_id", "repo_language")

import org.apache.spark.ml.feature.StringIndexer

val stringIndexer = new StringIndexer()
  .setInputCol("repo_language")
  .setOutputCol("repo_language_index")
  .setHandleInvalid("keep")
val stringIndexerModel = stringIndexer.fit(df1)

stringIndexerModel.labels
// Array[String] = Array(Python, C++, JavaScript, Go)

val indexedDF = stringIndexerModel.transform(df2)
indexedDF.show()
// +-------+-------------+-------------------+
// |repo_id|repo_language|repo_language_index|
// +-------+-------------+-------------------+
// |      1|       Python|                0.0|
// |      2|          C++|                1.0|
// |      3|          C++|                1.0|
// |      4|   JavaScript|                3.0|
// |      5|       Python|                0.0|
// |      6|       Python|                0.0|
// |      7|           Go|                2.0|
// |      8|   JavaScript|                3.0|
// |      9|    Brainfuck|                4.0| <- previously unseen
// |     10|    Brainfuck|                4.0| <- previously unseen
// |     11|          Red|                4.0| <- previously unseen
// +-------+-------------+-------------------+

ref:
https://spark.apache.org/docs/latest/ml-features.html#stringindexer
https://stackoverflow.com/questions/34681534/spark-ml-stringindexer-handling-unseen-labels
https://stackoverflow.com/questions/32277576/how-to-handle-categorical-features-with-spark-ml/32278617

Convert an Indexed Numeric Feature Back to the Original Categorical One

import org.apache.spark.ml.feature.IndexToString

val indexToString = new IndexToString()
  .setInputCol("repo_language_index")
  .setOutputCol("repo_language_ori")

val oriIndexedDF = indexToString.transform(indexedDF)
oriIndexedDF.show()
// +-------+-------------+-------------------+----------------------+
// |repo_id|repo_language|repo_language_index|     repo_language_ori|
// +-------+-------------+-------------------+----------------------+
// |      1|       Python|                0.0|                Python|
// |      2|          C++|                1.0|                   C++|
// |      3|          C++|                1.0|                   C++|
// |      4|   JavaScript|                2.0|            JavaScript|
// |      5|       Python|                0.0|                Python|
// |      6|       Python|                0.0|                Python|
// |      7|           Go|                3.0|                    Go|
// |      8|   JavaScript|                2.0|            JavaScript|
// |      9|    Brainfuck|                4.0|             __unknown| <- previously unseen
// |     10|    Brainfuck|                4.0|             __unknown| <- previously unseen
// |     11|          Red|                4.0|             __unknown| <- previously unseen
// +-------+-------------+-------------------+----------------------+

ref:
https://spark.apache.org/docs/latest/ml-features.html#indextostring

One-hot Encoding for Categorical Features

OneHotEncoder's input column only accepts numeric types. If you have string columns, you need to use StringIndexer to transform them into doubles, bessides, StringIndexer is able to properly deal with unseen values. In my humble opinion, you should always apply StringIndexer before OneHotEncoder.

Be careful that OneHotEncoder's vector length will be the maximun value in the column, you must apply OneHotEncoder on the union dataset of both training set and test set. Since OneHotEncoder does not accept empty string for name, you need to replace all empty strings with a placeholder, something like __empty.

import org.apache.spark.ml.feature.OneHotEncoder

val knownDF = spark.createDataFrame(Seq(
  (2, "b"),
  (3, "c"),
  (0, "x"),
  (6, "c"),
  (4, "a"),
  (1, "a"),
  (5, "a")
)).toDF("category_1", "category_2")

val unseenDF = spark.createDataFrame(Seq(
  (123, "e"),
  (6, "c"),
  (2, "b"),
  (456, "c"),
  (1, "a")
)).toDF("category_1", "category_2")

val knownOneHotDF = new OneHotEncoder()
  .setDropLast(true)
  .setInputCol("category_1")
  .setOutputCol("category_1_one_hot")
  .transform(knownDF)
knownOneHotDF.show()
// +----------+----------+------------------+
// |category_1|category_2|category_1_one_hot|
// +----------+----------+------------------+
// |         2|         b|     (6,[2],[1.0])|
// |         3|         c|     (6,[3],[1.0])|
// |         0|         x|     (6,[0],[1.0])|
// |         6|         c|         (6,[],[])|
// |         4|         a|     (6,[4],[1.0])|
// |         1|         a|     (6,[1],[1.0])|
// |         5|         a|     (6,[5],[1.0])|
// +----------+----------+------------------+

val unseenOneHotDF = new OneHotEncoder()
  .setDropLast(true)
  .setInputCol("category_1")
  .setOutputCol("category_1_one_hot")
  .transform(unseenDF)
unseenOneHotDF.show()
// +----------+----------+------------------+
// |category_1|category_2|category_1_one_hot|
// +----------+----------+------------------+
// |       123|         e| (456,[123],[1.0])|
// |         6|         c|   (456,[6],[1.0])|
// |         2|         b|   (456,[2],[1.0])|
// |       456|         c|       (456,[],[])|
// |         1|         a|   (456,[1],[1.0])|
// +----------+----------+------------------+

ref:
https://spark.apache.org/docs/latest/ml-features.html#onehotencoder
https://stackoverflow.com/questions/32277576/how-to-handle-categorical-features-with-spark-ml/40615508
https://stackoverflow.com/questions/33089781/spark-dataframe-handing-empty-string-in-onehotencoder

Create a Regular Expression Tokenizer

setGaps(true) 時的 pattern 是 match 分隔符;setGaps(false) 時的 pattern 則是 match 字。

import org.apache.spark.ml.feature.RegexTokenizer
import org.apache.spark.sql.functions._

val sentenceDF = spark.createDataFrame(Seq(
  (1, "Hi, I heard about Spark"),
  (2, "I wish Java could use case classes."),
  (3, "Deep,Learning,models,are,state-of-the-art"),
  (4, "fuck_yeah!!! No.")
)).toDF("id", "sentence")

val countTokensUDF = udf((words: Seq[String]) => words.length)

val regexTokenizer = new RegexTokenizer()
  .setInputCol("sentence")
  .setOutputCol("words")
  .setPattern("""[\w\-_]+""").setGaps(false)
  // .setPattern("""\W""").setGaps(true)
  // .setPattern("""[,. ]""").setGaps(true)
val tokenizedDF = regexTokenizer.transform(sentenceDF)

val df = tokenizedDF
  .select("sentence", "words")
  .withColumn("count", countTokensUDF($"words"))
// +-----------------------------------------+-----------------------------------------------+-----+
// |sentence                                 |words                                          |count|
// +-----------------------------------------+-----------------------------------------------+-----+
// |Hi, I heard about Spark                  |[hi, i, heard, about, spark]                   |5    |
// |I wish Java could use case classes.      |[i, wish, java, could, use, case, classes]     |7    |
// |Deep,Learning,models,are,state-of-the-art|[deep, learning, models, are, state-of-the-art]|5    |
// |fuck_yeah!!! No.                         |[fuck_yeah, no]                                |2    |
// +-----------------------------------------+-----------------------------------------------+-----+

ref:
https://spark.apache.org/docs/latest/ml-features.html#tokenizer

Handle Comma-seperated Categorical Column

You could use RegexTokenizer, CountVectorizer or HashingTF.

import org.apache.spark.ml.feature.{RegexTokenizer, CountVectorizer}

val df = spark.createDataFrame(Seq(
  (1, "Action,Sci-Fi"),
  (2, "Sci-Fi,Romance,Horror"),
  (3, "War,Horror")
)).toDF("movie_id", "genres")

val regexTokenizer = new RegexTokenizer()
  .setInputCol("genres")
  .setOutputCol("genres_words")
  .setPattern("""[\w\-_]+""").setGaps(false)
val wordsDF = regexTokenizer.transform(df)

val countVectorizerModel = new CountVectorizer()
  .setInputCol("genres_words")
  .setOutputCol("genres_vector")
  .setMinDF(1) // for whole corpus, delete any term that appears less then n times
  .setMinTF(1) // for each document, delete any term that appears less then n times
  .fit(wordsDF)
val countVectorDF = countModel.transform(wordsDF)

// HashingTF might suffer from potential hash collisions
// it's good to use a power of two
val hashingTF = new HashingTF()
  .setInputCol("genres_words")
  .setOutputCol("genres_htf_vector")
  .setNumFeatures(4)
val htfVectorDF = hashingTF.transform(countVectorDF)

htfVectorDF.show(false)
// +--------+---------------------+-------------------------+-------------------------+-------------------+
// |movie_id|genres               |genres_words             |genres_count_vector      |genres_htf_vector  |
// +--------+---------------------+-------------------------+-------------------------+-------------------+
// |1       |Action,Sci-Fi        |[action, sci-fi]         |(5,[0,3],[1.0,1.0])      |(4,[0],[2.0])      |
// |2       |Sci-Fi,Romance,Horror|[sci-fi, romance, horror]|(5,[0,1,4],[1.0,1.0,1.0])|(4,[0,2],[2.0,1.0])|
// |3       |War,Horror           |[war, horror]            |(5,[1,2],[1.0,1.0])      |(4,[0,2],[1.0,1.0])|
// +--------+---------------------+-------------------------+-------------------------+-------------------+

countModel.vocabulary
// Array(sci-fi, horror, action, romance, war)

ref:
https://spark.apache.org/docs/latest/ml-features.html#countvectorizer
https://spark.apache.org/docs/latest/ml-features.html#tf-idf

Train a Word2Vec Model

The output vector of any Word2Vec model is dense!

import org.apache.spark.ml.feature.Word2Vec

val df = spark.createDataFrame(Seq(
  (1, "Hi I heard about Apache Spark".toLowerCase().split(" ")),
  (2, "I wish Java could use case classes".toLowerCase().split(" ")),
  (3, "Logistic regression models are neat".toLowerCase().split(" ")),
  (4, "Apache Spark with Scala is awesome".toLowerCase().split(" ")),
  (5, Array("中文", "嘛ㄟ通", "but", "必須", "另外", "分詞"))
)).toDF("id", "words")

val word2Vec = new Word2Vec()
  .setInputCol("words")
  .setOutputCol("words_w2v")
  .setMaxIter(10)
  .setVectorSize(3)
  .setWindowSize(5)
  .setMinCount(1)
val word2VecModel = word2Vec.fit(df)

word2VecModel.transform(df)
// +---+------------------------------------------+----------------------------------------------------------+
// |id |words                                     |words_w2v                                                 |
// +---+------------------------------------------+----------------------------------------------------------+
// |1  |[hi, i, heard, about, apache, spark]      |[-0.02013699459393,-0.02995631482274,0.047685102870066956]|
// |2  |[i, wish, java, could, use, case, classes]|[-0.05012317272186,0.01141336891094,-0.03742781743806387] |
// |3  |[logistic, regression, models, are, neat] |[-0.04678827972413,0.032994424477,0.0010566591750830413]  |
// |4  |[apache, spark, with, scala, is, awesome] |[0.0265524153169,0.02056275321716,0.013326843579610188]   |
// |5  |[中文, 嘛ㄟ通, but, 必須, 另外, 分詞]         |[0.0571783996973,-0.02301329133545,0.013507421438892681]  |
// +---+------------------------------------------+----------------------------------------------------------+

val df2 = spark.createDataFrame(Seq(
  (6, Array("not-in-vocabularies", "neither", "no")),
  (7, Array("spark", "not-in-vocabularies")),
  (8, Array("not-in-vocabularies", "spark")),
  (9, Array("no", "not-in-vocabularies", "spark")),
  (10, Array("中文", "spark"))
)).toDF("id", "words")

word2VecModel.transform(df2)
// the order of words doesn't mater
// +---+-------------------------------------+-----------------------------------------------------------------+
// |id |words                                |words_w2v                                                        |
// +---+-------------------------------------+-----------------------------------------------------------------+
// |6  |[not-in-vocabularies, neither, no]   |[0.0,0.0,0.0]                                                    |
// |7  |[spark, hell_no, not-in-vocabularies]|[0.0027440187210838,-0.0529780387878418,0.05730373660723368]     |
// |8  |[hell_no, not-in-vocabularies, spark]|[0.0027440187210838,-0.0529780387878418,0.05730373660723368]     |
// |9  |[not-in-vocabularies, hell_no, spark]|[0.0027440187210838,-0.0529780387878418,0.05730373660723368]     |
// |10 |[no, not-in-vocabularies, spark]     |[0.0027440187210838,-0.0529780387878418,0.05730373660723368]     |
// |11 |[中文, spark]                         |[-0.009499748703092337,-0.018227852880954742,0.13357853144407272]|
// +---+-------------------------------------+-----------------------------------------------------------------+

anotherWord2VecModel.findSynonyms("developer", 5)
// +-----------+------------------+
// |       word|        similarity|
// +-----------+------------------+
// |        dev| 0.881394624710083|
// |development|0.7730562090873718|
// |       oier|0.6866029500961304|
// |  develover|0.6720684766769409|
// |     webdev|0.6582568883895874|
// +-----------+------------------+

ref:
https://spark.apache.org/docs/latest/ml-features.html#word2vec

Calculate the Pearson Correlation between Features

import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Matrix
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.Row

val featureNames = Array("stargazers_count", "forks_count", "subscribers_count")
val vectorAssembler = new VectorAssembler()
  .setInputCols(featureNames)
  .setOutputCol("features")

val df = vectorAssembler.transform(rawRepoInfoDS)
val correlationDF = Correlation.corr(df, "features")
val Row(coeff: Matrix) = correlationDF.head

println(featureNames.mkString(", "))
println(coeff.toString)
// stargazers_count, forks_count, subscribers_count
// 1.0                 0.5336901230713282  0.7664204175159971  
// 0.5336901230713282  1.0                 0.5414244966152617  
// 0.7664204175159971  0.5414244966152617  1.0

ref:
https://spark.apache.org/docs/latest/ml-statistics.html

DIMSUM

import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}

val repoWordRDD = repoVectorDF
  .select($"repo_id", $"text_w2v")
  .rdd
  .flatMap((row: Row) => {
    val repoId = row.getInt(0)
    val vector = row.getAs[DenseVector](1)
    vector.toArray.zipWithIndex.map({
      case (element, index) => MatrixEntry(repoId, index, element)
    })
  })
val repoWordMatrix = new CoordinateMatrix(repoWordRDD)
val wordRepoMatrix = repoWordMatrix.transpose

val repoSimilarityRDD = wordRepoMatrix
  .toRowMatrix
  .columnSimilarities(0.1)
  .entries
  .flatMap({
    case MatrixEntry(row: Long, col: Long, sim: Double) => {
      if (sim >= 0.5) {
        Array((row, col, sim))
      }
      else {
        None
      }
    }
  })
spark.createDataFrame(repoSimilarityRDD).toDF("item_1", "item_2", "similarity")
repoSimilarityDF.show(false)

ref:
https://stackoverflow.com/questions/42455725/columnsimilarities-back-to-spark-data-frame
https://forums.databricks.com/questions/248/when-should-i-use-rowmatrixcolumnsimilarities.html

Train a Locality Sensitive Hashing (LSH) Model: Bucketed Random Projection LSH

To specify the value of bucketLength, if input vectors are normalized, 1-10 times of pow(numRecords, -1/inputDim) would be a reasonable value. For instance, Math.pow(334913.0, -1.0 / 200.0) = 0.9383726472256705.

import org.apache.spark.ml.feature.BucketedRandomProjectionLSH
import org.apache.spark.ml.linalg.Vectors

val userDF = spark.createDataFrame(Seq(
  (1, Vectors.sparse(6, Seq((0, -4.0), (1, 1.0), (2, 0.2)))),
  (2, Vectors.sparse(6, Seq((0, 5.5), (1, -0.6), (2, 9.0)))),
  (3, Vectors.sparse(6, Seq((1, 1.0), (2, 5.3), (4, 3.0)))),
  (4, Vectors.sparse(6, Seq((1, 1.0), (2, 1.0), (4, 1.0)))),
  (5, Vectors.sparse(6, Seq((2, 1.0), (5, -0.2)))),
  (6, Vectors.sparse(6, Seq((0, 0.7)))),
  (7, Vectors.sparse(6, Seq((1, 0.3), (2, 1.0))))
)).toDF("user_id", "features")

val repoDF = spark.createDataFrame(Seq(
  (11, Vectors.sparse(6, Seq((0, 1.0), (1, 1.0), (2, 1.0), (3, 1.0), (4, 1.0), (5, 1.0)))),
  (12, Vectors.sparse(6, Seq((0, 9.0), (1, -2.0), (2, -21.0), (3, 9.0), (4, 1.0), (5, 9.0)))),
  (13, Vectors.sparse(6, Seq((0, 1.0), (1, 1.0), (2, -3.0), (3, 3.0), (4, 7.0), (5, 9.0)))),
  (14, Vectors.sparse(6, Seq((0, 1.0), (1, 1.0), (2, -3.0)))),
  (15, Vectors.sparse(6, Seq((1, 1.0), (2, 1.0))))
)).toDF("repo_id", "features")

val lsh = new BucketedRandomProjectionLSH()
  .setBucketLength(0.6812920690579612)
  .setNumHashTables(4)
  .setInputCol("features")
  .setOutputCol("hashes")
val lshModel = lsh.fit(repoDF)

val hashedUserDF = lshModel.transform(userDF)
val hashedRepoDF = lshModel.transform(repoDF)
hashedRepoDF.show(false)
// +-------+----------------------------------------------+--------------------------------+
// |repo_id|features                                      |hashes                          |
// +-------+----------------------------------------------+--------------------------------+
// |11     |(6,[0,1,2,3,4,5],[1.0,1.0,1.0,1.0,1.0,1.0])   |[[1.0], [-2.0], [-1.0], [-1.0]] |
// |12     |(6,[0,1,2,3,4,5],[9.0,-2.0,-21.0,9.0,1.0,9.0])|[[21.0], [-28.0], [18.0], [0.0]]|
// |13     |(6,[0,1,2,3,4,5],[1.0,1.0,-3.0,3.0,7.0,9.0])  |[[4.0], [-10.0], [6.0], [-3.0]] |
// |14     |(6,[0,1,2],[1.0,1.0,-3.0])                    |[[2.0], [-3.0], [2.0], [1.0]]   |
// |15     |(6,[1,2],[1.0,1.0])                           |[[-1.0], [0.0], [-2.0], [0.0]]  |
// +-------+----------------------------------------------+--------------------------------+

val similarDF = lshModel
  .approxSimilarityJoin(hashedUserDF, hashedRepoDF, 10.0, "distance")
  .select($"datasetA.user_id".alias("user_id"), $"datasetB.repo_id".alias("repo_id"), $"distance")
  .orderBy($"user_id", $"distance".asc)
similarDF.show(false)
// +-------+-------+------------------+
// |user_id|repo_id|distance          |
// +-------+-------+------------------+
// |1      |15     |4.079215610874228 |
// |3      |15     |5.243090691567332 |
// |4      |15     |1.0               |
// |4      |11     |1.7320508075688772|
// |5      |15     |1.019803902718557 |
// |5      |11     |2.33238075793812  |
// |6      |15     |1.57797338380595  |
// |7      |15     |0.7               |
// |7      |11     |2.118962010041709 |
// +-------+-------+------------------+

val userVector = Vectors.sparse(6, Seq((0, 1.5), (1, 0.8), (2, 2.0)))
val singleSimilarDF = lshModel
  .approxNearestNeighbors(hashedRepoDF, userVector, 5, "distance")
  .select($"repo_id", $"features", $"distance")
singleSimilarDF.show(false)
// +-------+----------------------------------------------+------------------+
// |repo_id|features                                      |distance          |
// +-------+----------------------------------------------+------------------+
// |15     |(6,[1,2],[1.0,1.0])                           |1.8138357147217055|
// |12     |(6,[0,1,2,3,4,5],[9.0,-2.0,-21.0,9.0,1.0,9.0])|27.49709075520536 |
// +-------+----------------------------------------------+------------------+

The problem of approxSimilarityJoin() is that you can't control the number of generated items, the disadvantage of approxNearestNeighbors() is that you have to manually iterate all users to find similar items. Moreover, both methods can easily suffer from the infamous java.lang.OutOfMemoryError.

ref:
https://spark.apache.org/docs/latest/ml-features.html#locality-sensitive-hashing

Train a Locality Sensitive Hashing (LSH) Model: MinHash LSH

MinHash LSH treats input as a binary vector, that is, all non-zero values (include negative values) are just 1. Basically, the Word2Vec vector won't be an appropriate input to MinHash LSH.

import org.apache.spark.ml.feature.MinHashLSH
import org.apache.spark.ml.linalg.Vectors

val userDF = spark.createDataFrame(Seq(
  (1, Vectors.sparse(6, Seq((0, -4.0), (1, 1.0), (2, 0.2)))),
  (2, Vectors.sparse(6, Seq((0, 5.5), (1, -0.6), (2, 9.0)))),
  (3, Vectors.sparse(6, Seq((1, 1.0), (2, 5.3), (4, 3.0)))),
  (4, Vectors.sparse(6, Seq((1, 1.0), (2, 1.0), (4, 1.0)))),
  (5, Vectors.sparse(6, Seq((2, 1.0), (5, -0.2)))),
  (6, Vectors.sparse(6, Seq((2, 0.7)))),
  (7, Vectors.sparse(6, Seq((3, 0.3), (5, 1.0))))
)).toDF("user_id", "features")

val repoDF = spark.createDataFrame(Seq(
  (11, Vectors.sparse(6, Seq((1, 1.0), (3, 1.0), (5, 1.0)))),
  (12, Vectors.sparse(6, Seq((2, 1.0), (3, 1.0), (5, 1.0)))),
  (13, Vectors.sparse(6, Seq((1, 1.0), (2, 1.0), (4, 1.0))))
)).toDF("repo_id", "features")

val lsh = new MinHashLSH()
  .setNumHashTables(4)
  .setInputCol("features")
  .setOutputCol("hashes")

val lshModel = lsh.fit(userDF)
val hashedUserDF = lshModel.transform(userDF)
val hashedRepoDF = lshModel.transform(repoDF)

hashedUserDF.show(false)
// user 1 and 2 have the same hashed vector
// user 3 and 4 have the same hashed vector
// +-------+--------------------------+-----------------------------------------------------------------------+
// |user_id|features                  |hashes                                                                 |
// +-------+--------------------------+-----------------------------------------------------------------------+
// |1      |(6,[0,1,2],[-4.0,1.0,0.2])|[[-2.031299587E9], [-1.974869772E9], [-1.974047307E9], [4.95314097E8]] |
// |2      |(6,[0,1,2],[5.5,-0.6,9.0])|[[-2.031299587E9], [-1.974869772E9], [-1.974047307E9], [4.95314097E8]] |
// |3      |(6,[1,2,4],[1.0,5.3,3.0]) |[[-2.031299587E9], [-1.974869772E9], [-1.230128022E9], [8.7126731E8]]  |
// |4      |(6,[1,2,4],[1.0,1.0,1.0]) |[[-2.031299587E9], [-1.974869772E9], [-1.230128022E9], [8.7126731E8]]  |
// |5      |(6,[2,5],[1.0,-0.2])      |[[-2.031299587E9], [-1.758749518E9], [-4.86208737E8], [-1.919887134E9]]|
// |6      |(6,[2],[0.7])             |[[-2.031299587E9], [-1.758749518E9], [-4.86208737E8], [1.247220523E9]] |
// |7      |(6,[3,5],[0.3,1.0])       |[[-1.278435698E9], [-1.542629264E9], [2.57710548E8], [-1.919887134E9]] |
// +-------+--------------------------+-----------------------------------------------------------------------+

val userSimilarRepoDF = lshModel
  .approxSimilarityJoin(hashedUserDF, hashedRepoDF, 0.6, "distance")
  .select($"datasetA.user_id".alias("user_id"), $"datasetB.repo_id".alias("repo_id"), $"distance")
  .orderBy($"user_id", $"distance".asc)

userSimilarRepoDF.show(false)
// +-------+-------+-------------------+
// |user_id|repo_id|distance           |
// +-------+-------+-------------------+
// |1      |13     |0.5                |
// |2      |13     |0.5                |
// |3      |13     |0.0                |
// |4      |13     |0.0                |
// |5      |12     |0.33333333333333337|
// |7      |12     |0.33333333333333337|
// |7      |11     |0.33333333333333337|
// +-------+-------+-------------------+

ref:
https://databricks.com/blog/2017/05/09/detecting-abuse-scale-locality-sensitive-hashing-uber-engineering.html

Train a Logistic Regression Model

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.linalg.Vectors

val training = spark.createDataFrame(Seq(
  (1.0, Vectors.dense(1.0, 2.5, 0.0, 0.0)),
  (1.0, Vectors.dense(0.1, 9.0, 0.0, 0.0)),
  (1.0, Vectors.dense(0.0, 0.0, 1.0, 0.0)),
  (0.0, Vectors.dense(0.0, 0.0, 2.0, 9.0)),
  (0.0, Vectors.dense(1.0, 0.0, 0.0, 5.0))
)).toDF("label", "features")

val lr = new LogisticRegression()
  .setMaxIter(100)
  .setRegParam(0.0)
  .setElasticNetParam(0.0)
  .setFamily("binomial")
  .setFeaturesCol("features")
  .setLabelCol("label")

lr.explainParams()

val lrModel = lr.fit(training)

println(s"Coefficients: ${lrModel.coefficients}")
// [2.0149015925419,2.694173163503675,9.547978766053463,-5.592221425156231]

println(s"Intercept: ${lrModel.intercept}")
// 8.552229795281482

val result = lrModel.transform(test)

ref:
https://spark.apache.org/docs/latest/ml-classification-regression.html#logistic-regression
https://spark.apache.org/docs/latest/mllib-linear-methods.html#logistic-regression

import org.apache.spark.ml.classification.BinaryLogisticRegressionSummary

val binarySummary = lrModel.summary.asInstanceOf[BinaryLogisticRegressionSummary]
println(s"Area Under ROC: ${binarySummary.areaUnderROC}")

ref:
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.classification.BinaryLogisticRegressionTrainingSummary

Evaluate a Binary Classification Model

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.linalg.Vectors

val df = spark.createDataFrame(Seq(
  (Vectors.dense(0.0, 2.5), 1.0), // correct
  (Vectors.dense(1.0, 4.1), 1.0), // correct
  (Vectors.dense(9.2, 1.1), 0.0), // correct
  (Vectors.dense(1.0, 0.1), 0.0), // correct
  (Vectors.dense(5.0, 0.5), 1.0)  // incorrect
)).toDF("rawPrediction", "starring")

val evaluator = new BinaryClassificationEvaluator()
  .setMetricName("areaUnderROC")
  .setRawPredictionCol("rawPrediction")
  .setLabelCol("starring")
val metric = evaluator.evaluate(df)
// 0.8333333333333333

ref:
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

Train an ALS Model

import org.apache.spark.ml.recommendation.ALS

val df = spark.createDataFrame(Seq(
  (1, 1, 12),
  (1, 2, 90),
  (1, 4, 4),
  (2, 4, 1),
  (3, 5, 8)
)).toDF("user", "item", "rating")

val als = new ALS()
  .setImplicitPrefs(true)
  .setRank(5)
  .setRegParam(0.5)
  .setAlpha(40)
  .setMaxIter(10)
  .setSeed(42)
  .setColdStartStrategy("drop")
val alsModel = als.fit(df)

val predictionDF = alsModel.transform(df)
// +----+----+------+----------+
// |user|item|rating|prediction|
// +----+----+------+----------+
// |   1|   1|    12| 0.9988487|
// |   3|   5|     8| 0.9984464|
// |   1|   4|     4|0.99887615|
// |   2|   4|     1| 0.9921428|
// |   1|   2|    90| 0.9997897|
// +----+----+------+----------+

predictionDF.printSchema()
// root
 // |-- user: integer (nullable = false)
 // |-- item: integer (nullable = false)
 // |-- rating: integer (nullable = false)
// |-- prediction: float (nullable = false)

val userRecommendationsDF = alsModel.recommendForAllUsers(15)
// +----+-----------------------------------------------------------------+
// |user|recommendations                                                  |
// +----+-----------------------------------------------------------------+
// |1   |[[2,0.9997897], [4,0.9988761], [1,0.9988487], [5,0.0]]           |
// |3   |[[5,0.9984464], [1,2.9802322E-8], [2,0.0], [4,0.0]]              |
// |2   |[[4,0.9921428], [2,0.10759391], [1,0.10749264], [5,1.4901161E-8]]|
// +----+-----------------------------------------------------------------+

userRecommendationsDF.printSchema()
// root
 // |-- user: integer (nullable = false)
 // |-- recommendations: array (nullable = true)
 // |    |-- element: struct (containsNull = true)
 // |    |    |-- item: integer (nullable = true)
// |    |    |-- rating: float (nullable = true)

ref:
https://spark.apache.org/docs/latest/ml-collaborative-filtering.html

Save and Load an ALS Model

import org.apache.hadoop.mapred.InvalidInputException
import org.apache.spark.ml.recommendation.{ALS, ALSModel}

val alsModelSavePath = "./spark-data/20170902/alsModel.parquet"
val alsModel: ALSModel = try {
  ALSModel.load(alsModelSavePath)
} catch {
  case e: InvalidInputException => {
    if (e.getMessage().contains("Input path does not exist")) {
      val als = new ALS()
        .setImplicitPrefs(true)
        .setRank(100)
        .setRegParam(0.5)
        .setAlpha(40)
        .setMaxIter(22)
        .setSeed(42)
        .setColdStartStrategy("drop")
        .setUserCol("user_id")
        .setItemCol("repo_id")
        .setRatingCol("starring")
      val alsModel = als.fit(rawRepoStarringDS)
      alsModel.save(alsModelSavePath)
      alsModel
    } else {
      throw e
    }
  }
}

Create a Custom Transformer

package ws.vinta.albedo.transformers

import org.apache.spark.broadcast.Broadcast
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.param.{DoubleParam, Param, ParamMap}
import org.apache.spark.ml.util.{DefaultParamsWritable, Identifiable}
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, Dataset, Row}

import scala.collection.mutable

class NegativeBalancer(override val uid: String, val bcPopularItems: Broadcast[mutable.LinkedHashSet[Int]])
  extends Transformer with DefaultParamsWritable {

  def this(bcPopularItems: Broadcast[mutable.LinkedHashSet[Int]]) = {
    this(Identifiable.randomUID("negativeBalancer"), bcPopularItems)
  }

  val userCol = new Param[String](this, "userCol", "User 所在的欄位名稱")

  def getUserCol: String = $(userCol)

  def setUserCol(value: String): this.type = set(userCol, value)
  setDefault(userCol -> "user")

  val itemCol = new Param[String](this, "itemCol", "Item 所在的欄位名稱")

  def getItemCol: String = $(itemCol)

  def setItemCol(value: String): this.type = set(itemCol, value)
  setDefault(itemCol -> "item")

  val labelCol = new Param[String](this, "labelCol", "Label 所在的欄位名稱")

  def getLabelCol: String = $(labelCol)

  def setLabelCol(value: String): this.type = set(labelCol, value)
  setDefault(labelCol -> "label")

  val negativeValue = new DoubleParam(this, "negativeValue", "負樣本的值")

  def getNegativeValue: Double = $(negativeValue)

  def setNegativeValue(value: Double): this.type = set(negativeValue, value)
  setDefault(negativeValue -> 0.0)

  val negativePositiveRatio = new DoubleParam(this, "negativePositiveRatio", "負樣本與正樣本的比例")

  def getNegativePositiveRatio: Double = $(negativePositiveRatio)

  def setNegativePositiveRatio(value: Double): this.type = set(negativePositiveRatio, value)
  setDefault(negativePositiveRatio -> 1.0)

  override def transformSchema(schema: StructType): StructType = {
    Map($(userCol) -> IntegerType, $(itemCol) -> IntegerType, $(labelCol) -> DoubleType)
      .foreach{
        case(columnName: String, expectedDataType: DataType) => {
          val actualDataType = schema(columnName).dataType
          require(actualDataType.equals(IntegerType), s"Column $columnName must be of type $expectedDataType but was actually $actualDataType.")
        }
      }

    schema
  }

  override def transform(dataset: Dataset[_]): DataFrame = {
    transformSchema(dataset.schema)

    val popularItems: mutable.LinkedHashSet[Int] = this.bcPopularItems.value

    val emptyItemSet = new mutable.HashSet[Int]
    val addToItemSet = (itemSet: mutable.HashSet[Int], item: Int) => itemSet += item
    val mergeItemSets = (set1: mutable.HashSet[Int], set2: mutable.HashSet[Int]) => set1 ++= set2

    val getUserNegativeItems = (userItemsPair: (Int, mutable.HashSet[Int])) => {
      val (user, positiveItems) = userItemsPair
      val negativeItems = popularItems.diff(positiveItems)
      val requiredNegativeItemsCount = (positiveItems.size * this.getNegativePositiveRatio).toInt
      (user, negativeItems.slice(0, requiredNegativeItemsCount))
    }
    val expandNegativeItems = (userItemsPair: (Int, mutable.LinkedHashSet[Int])) => {
      val (user, negativeItems) = userItemsPair
      negativeItems.map({(user, _, $(negativeValue))})
    }

    import dataset.sparkSession.implicits._

    // TODO: 目前是假設傳進來的 dataset 都是 positive samples,之後可能得處理含有 negative samples 的情況
    val negativeDF = dataset
      .select($(userCol), $(itemCol))
      .rdd
      .map({
        case Row(user: Int, item: Int) => (user, item)
      })
      .aggregateByKey(emptyItemSet)(addToItemSet, mergeItemSets)
      .map(getUserNegativeItems)
      .flatMap(expandNegativeItems)
      .toDF($(userCol), $(itemCol), $(labelCol))

    dataset.select($(userCol), $(itemCol), $(labelCol)).union(negativeDF)
  }

  override def copy(extra: ParamMap): this.type = {
    defaultCopy(extra)
  }
}

ref:
https://www.safaribooksonline.com/library/view/high-performance-spark/9781491943199/ch09.html#extending_spark_ml
https://stackoverflow.com/questions/40615713/how-to-write-a-custom-transformer-in-mllib
https://issues.apache.org/jira/browse/SPARK-17048

Create a Custom Evaluator

package ws.vinta.albedo.evaluators

import org.apache.spark.ml.evaluation.Evaluator
import org.apache.spark.ml.param.{Param, ParamMap}
import org.apache.spark.ml.util.{DefaultParamsWritable, Identifiable}
import org.apache.spark.mllib.evaluation.RankingMetrics
import org.apache.spark.sql.{DataFrame, Dataset, Row}

class RankingEvaluator(override val uid: String, val userActualItemsDF: DataFrame)
  extends Evaluator with DefaultParamsWritable {

  def this(userActualItemsDF: DataFrame) = {
    this(Identifiable.randomUID("rankingEvaluator"), userActualItemsDF)
  }

  val metricName = new Param[String](this, "metricName", "評估方式")

  def getMetricName: String = $(metricName)

  def setMetricName(value: String): this.type = set(metricName, value)
  setDefault(metricName -> "ndcg@k")

  val k = new Param[Int](this, "k", "只評估前 k 個 items 的排序結果")

  def getK: Int = $(k)

  def setK(value: Int): this.type = set(k, value)
  setDefault(k -> 15)

  override def isLargerBetter: Boolean = $(metricName) match {
    case "map" => true
    case "ndcg@k" => true
    case "precision@k" => true
  }

  override def evaluate(dataset: Dataset[_]): Double = {
    import dataset.sparkSession.implicits._

    val userPredictedItemsDF = dataset.select($"user_id", $"recommendations.repo_id".alias("items"))

    val bothItemsRDD = userPredictedItemsDF.join(userActualItemsDF, Seq("user_id", "user_id"))
      .select(userPredictedItemsDF.col("items"), userActualItemsDF.col("items"))
      .rdd
      .map((row: Row) => {
        // Row(userPredictedItems, userActualItems)
        (row(0).asInstanceOf[Seq[Int]].toArray, row(1).asInstanceOf[Seq[Int]].toArray)
      })

    val rankingMetrics = new RankingMetrics(bothItemsRDD)
    val metric = $(metricName) match {
      case "map" => rankingMetrics.meanAveragePrecision
      case "ndcg@k" => rankingMetrics.ndcgAt($(k))
      case "precision@k" => rankingMetrics.precisionAt($(k))
    }
    metric
  }

  override def copy(extra: ParamMap): RankingEvaluator = {
    defaultCopy(extra)
  }
}

ref:
https://spark.apache.org/docs/latest/mllib-evaluation-metrics.html#ranking-systems
https://www.safaribooksonline.com/library/view/spark-the-definitive/9781491912201/ch19.html#s6c5---recommendation

Apply Transformer on Multiple Columns

import org.apache.spark.ml.feature._

val userCategoricalColumnNames = Array("account_type", "clean_company", "clean_email", "clean_location")
val userCategoricalTransformers = userCategoricalColumnNames.flatMap((columnName: String) => {
  val stringIndexer = new StringIndexer()
    .setInputCol(columnName)
    .setOutputCol(s"${columnName}_index")
    .setHandleInvalid("keep")
  val oneHotEncoder = new OneHotEncoder()
    .setInputCol(s"${columnName}_index")
    .setOutputCol(s"${columnName}_ohe")
    .setDropLast(true)
  Array(stringIndexer, oneHotEncoder)
})
userCategoricalTransformers.foreach(println)
// strIdx_4029f57e379a
// oneHot_f0decb92a05c
// strIdx_fb855ad6caaa
// oneHot_f1be19344002
// strIdx_7fa62a683293
// oneHot_097ae442d8fc
// strIdx_0ff7ffa022a1
// oneHot_4a9f72a7f5d8

ref:
https://stackoverflow.com/questions/34167105/using-spark-mls-onehotencoder-on-multiple-columns

Cross-validate a Pipeline Model

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder}

val vectorAssembler = new VectorAssembler()
  .setInputCols(Array("feature1", "feature2", "feature3"))
  .setOutputCol("features")

val lr = new LogisticRegression()
  .setFeaturesCol("features")
  .setLabelCol("starring")

val pipeline = new Pipeline()
  .setStages(Array(vectorAssembler, lr))

val paramGrid = new ParamGridBuilder()
  .addGrid(lr.maxIter, Array(20, 100))
  .addGrid(lr.regParam, Array(0.0, 0.5, 1.0, 2.0))
  .addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
  .build()

val evaluator = new BinaryClassificationEvaluator()
  .setMetricName("areaUnderROC")
  .setRawPredictionCol("rawPrediction")
  .setLabelCol("starring")

val cv = new CrossValidator()
  .setEstimator(pipeline)
  .setEstimatorParamMaps(paramGrid)
  .setEvaluator(evaluator)
  .setNumFolds(3)

val cvModel = cv.fit(trainingDF)

ref:
https://spark.apache.org/docs/latest/ml-tuning.html#cross-validation

Extract Best Parameters from a Cross-validation Model

import org.apache.spark.ml.PipelineModel
import org.apache.spark.ml.classification.LogisticRegressionModel

val bestPipelineModel = cvModel.bestModel.asInstanceOf[PipelineModel]
val lrModel = bestPipelineModel.stages(0).asInstanceOf[LogisticRegressionModel]
lrModel.extractParamMap()
// or
lrModel.explainParams()

ref:
https://stackoverflow.com/questions/31749593/how-to-extract-best-parameters-from-a-crossvalidatormodel

Show All Parameters of a Cross-validation Model

import org.apache.spark.ml.param.ParamMap

cvModel.getEstimatorParamMaps
  .zip(cvModel.avgMetrics)
  .sortWith(_._2 > _._2)
  .foreach((pair: (ParamMap, Double)) => {
    println(s"${pair._2}: ${pair._1}")
  })
// 0.8999999999999999: {
//     hashingTF_ac8be8d5806b-numFeatures: 1000,
//     logreg_9f79de6e51ec-regParam: 0.1
// }
// 0.8875: {
//     hashingTF_ac8be8d5806b-numFeatures: 100,
//     logreg_9f79de6e51ec-regParam: 0.1
// }
// 0.875: {
//     hashingTF_ac8be8d5806b-numFeatures: 100,
//     logreg_9f79de6e51ec-regParam: 0.01
// }

ref:
https://stackoverflow.com/questions/31749593/how-to-extract-best-parameters-from-a-crossvalidatormodel
https://alvinalexander.com/scala/how-sort-scala-sequences-seq-list-array-buffer-vector-ordering-ordered

Spark SQL cookbook (Scala)

Spark SQL cookbook (Scala)

Scala is the first class citizen language for interacting with Apache Spark, but it's difficult to learn. This article is mostly about operating DataFrame or Dataset in Spark SQL.

Access SparkSession

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

val conf = new SparkConf()
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

implicit val spark: SparkSession = SparkSession
  .builder()
  .appName("PersonalizedRanker")
  .config(conf)
  .getOrCreate()

val sc = spark.sparkContext
sc.setLogLevel("WARN")

Before Spark 2.0:

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

val conf: SparkConf = new SparkConf()
  .setAppName("PersonalizedRanker")
  .setMaster("local[*]")

val sc: SparkContext = new SparkContext(conf)

ref:
https://sparkour.urizone.net/recipes/understanding-sparksession/
https://spark.apache.org/docs/latest/configuration.html

Import Implicits

val spark = SparkSession.builder().getOrCreate()

import spark.implicits._

// you could also access SparkSession via any Dataset or DataFrame
import someDS.sparkSession.implicits._
import someDF.sparkSession.implicits._

val ratingDF = rawDF
  .selectExpr("from_user_id AS user", "repo_id AS item", "1 AS rating", "starred_at")
  .orderBy($"user", $"starred_at".desc)

Read Data from MySQL

import java.util.Properties

val dbUrl = "jdbc:mysql://mysql:3306/albedo?user=root&password=123&verifyServerCertificate=false&useSSL=false"
val prop = new Properties()
prop.put("driver", "com.mysql.jdbc.Driver")
val rawDF = spark.read.jdbc(dbUrl, "app_repostarring", prop)

ref:
https://docs.databricks.com/spark/latest/data-sources/sql-databases.html

Read Data from a Apache Parquet File

import org.apache.spark.sql.{AnalysisException, DataFrame, Dataset, SparkSession}

import spark.implicits._

case class RepoStarring(
  user_id: Int,
  repo_id: Int,
  starred_at: java.sql.Timestamp,
  starring: Double
)

val dataDir = "."
val today = "20170820"

val savePath = s"$dataDir/spark-data/$today/repoStarringDF.parquet"
val df: DataFrame = try {
  spark.read.parquet(savePath)
} catch {
  case e: AnalysisException => {
    if (e.getMessage().contains("Path does not exist")) {
      val df = spark.read.jdbc(dbUrl, "app_repostarring", props)
        .select("user_id", "repo_id", "starred_at")
        .withColumn("starring", lit(1.0))
      df.write.mode("overwrite").parquet(savePath)
      df
    } else {
      throw e
    }
  }
}
df.as[RepoStarring]

Read Data from a Apache Avro File

$ spark-submit --packages "com.databricks:spark-avro_2.11:3.2.0"
import com.databricks.spark.avro._
import org.apache.spark.sql.SparkSession

implicit val spark = SparkSession
  .builder()
  .appName("Word2VecTrainer")
  .getOrCreate()

val df = spark.read.avro("./githubarchive_repo_info.avro")
df.show()

ref:
https://github.com/databricks/spark-avro

Create a RDD from a list of Certain Case Class

import org.apache.spark.rdd.RDD

case class WikipediaArticle(title: String, text: String) {
  def mentionsLanguage(lang: String): Boolean = text.split(' ').contains(lang)
}

val wikiRdd: RDD[WikipediaArticle] = sc.parallelize(Seq(
  WikipediaArticle("a1", "abc Scala xyz"),
  WikipediaArticle("a2", "abc Python xyz"),
  WikipediaArticle("a3", "abc Scala xyz"),
  WikipediaArticle("a4", "abc Scala xyz")
))

Get a Subset of a RDD

val subsetArr = someRDD.take(1000)
var subsetRDD = sc.parallelize(subsetArr)

Create a DataFrame from a Seq

import org.apache.spark.sql.functions._

val df = spark.createDataFrame(Seq(
    (1, 1, 1, "2017-05-16 20:01:00.0"),
    (1, 2, 1, "2017-05-17 21:01:00.0"),
    (2, 1, 0, "2017-05-18 22:01:00.0"),
    (3, 1, 1, "2017-05-10 22:01:00.0")
  ))
  .toDF("user", "item", "star", "starred_at")
  .withColumn("starred_at", unix_timestamp(col("starred_at")).cast("timestamp"))
// you could override the schema
// val df = spark.createDataFrame(df.rdd, starringSchema)

case class Starring(user: Int, item: Int, star: Int, starred_at: java.sql.Timestamp)
val ds = df.as[Starring]

df.printSchema()
// root
// |-- user: integer (nullable = false)
// |-- item: integer (nullable = false)
// |-- star: integer (nullable = false)
// |-- starred_at: timestamp (nullable = false)

ref:
https://medium.com/@mrpowers/manually-creating-spark-dataframes-b14dae906393

Create a Dataset

import spark.implicits._

val ds1 = spark.read.json("people.json").as[Person]
val ds2 = df.toDS
val ds3 = rdd.toDS

ref:
https://www.coursera.org/learn/scala-spark-big-data/lecture/yrfPh/datasets

Statistics

repoInfoDS.count()
// 16000

repoInfoDS
  .describe("language", "size", "stargazers_count", "forks_count", "subscribers_count", "open_issues_count")
  .show()
// +-------+--------+-----------------+-----------------+----------------+-----------------+-----------------+
// |summary|language|             size| stargazers_count|     forks_count|subscribers_count|open_issues_count|
// +-------+--------+-----------------+-----------------+----------------+-----------------+-----------------+
// |  count|   16000|            16000|            16000|           16000|            16000|            16000|
// |   mean|    null|    14777.8928125|      238.5754375|       61.164375|        20.802375|         9.896625|
// | stddev|    null|133926.8365289536|1206.220336641683|394.950236056925|84.09955924587845|56.72585435688847|
// |    min|   ANTLR|                0|                2|               0|                0|                0|
// |    max|    XSLT|          9427027|            56966|           28338|             4430|             3503|
// +-------+--------+-----------------+-----------------+----------------+-----------------+-----------------+

repoInfoDS.stat.corr("stargazers_count", "forks_count")
// 0.8408082958003276

repoInfoDS.stat.corr("stargazers_count", "size")
// 0.05351197356230549

repoInfoDS.stat.freqItems(Seq("language"), 0.1).show(truncate=false)
// +-----------------------------------------------------------+
// |language_freqItems                                         |
// +-----------------------------------------------------------+
// |[Ruby, Objective-C, C, Go, JavaScript, Swift, Java, Python]|
// +-----------------------------------------------------------+

ref:
https://databricks.com/blog/2015/06/02/statistical-and-mathematical-functions-with-dataframes-in-spark.html

Generate a Schema from a List of Column Names

import org.apache.spark.sql.types._

def generateSchema(columnNames: List[String]): StructType = {
  val fields = columnNames.map({
    case columnName: String if columnName == "tucaseid" => {
      StructField(columnName, StringType, nullable = false)
    }
    case columnName => {
      StructField(columnName, DoubleType, nullable = false)
    }
  })
  StructType(fields.toList)
}

val columnNames = List("tucaseid", "gemetsta", "gtmetsta", "peeduca", "pehspnon", "ptdtrace", "teage")
val schema = generateSchema(columnNames)

Generate a Schema from a Case Class

import java.sql.Timestamp
import org.apache.spark.sql.Encoders

case class Starring(user: Int, item: Int, star: Int, starred_at: Timestamp)
val starringSchema = Encoders.product[Starring].schema

ref:
https://stackoverflow.com/questions/36746055/generate-a-spark-structtype-schema-from-a-case-class

Change a DataFrame's Schema

val newDF = spark.createDataFrame(oldDF.rdd, starringSchema)

Print the Vector Length of Specific Columns

import org.apache.spark.ml.linalg.Vector 

userProfileDF.select("languages_preferences_w2v", "clean_bio_w2v")
  .head
  .toSeq.foreach((field: Any) => {
    println(field.asInstanceOf[Vector].size)
  })

Convert a DataFrame into a Dataset

import java.sql.Timestamp
import org.apache.spark.ml.feature.SQLTransformer

case class Starring(user: Int, item: Int, star: Int, starred_at: Timestamp)

val starringBuilder = new SQLTransformer()
val starringSQL = """
SELECT from_user_id AS user, repo_id AS item, 1 AS star, starred_at
FROM __THIS__
ORDER BY user, starred_at DESC
"""
starringBuilder.setStatement(starringSQL)
val starringDS = starringBuilder.transform(rawDF).as[Starring]

Convert a Dataset into a PairRDD

val pairRDD = dataset
  .select("user", "item")
  .rdd
  .map(row => (row(0), row(1)))

// or

case class UserItemPair(user: Int, item: Int)

val pairRDD = dataset
  .select("user", "item").as[UserItemPair]
  .rdd
  .map(row => (row.user, row.item))

// or

import org.apache.spark.sql.Row

val pairRDD = dataset
  .select("user", "item")
  .rdd
  .map({
    case Row(user: Int, item: Int) => (user, item)
  })

ref:
https://stackoverflow.com/questions/30655914/map-rdd-to-pairrdd-in-scala

Convert a Dataset into a List or Set

val popularRepos = popularReposDS
  .select("item")
  .rdd
  .map(r => r(0).asInstanceOf[Int])
  .collect()
  .to[List]

// or

val popularRepos = popularReposDS
  .select($"repo_id".as[Int])
  .collect()
  .to[List]

// List(98837133, 97071697, 17439026, ...)

ref:
https://stackoverflow.com/questions/32000646/extract-column-values-of-dataframe-as-list-in-apache-spark

Add a Column to a DataFrame

import org.apache.spark.sql.functions.lit

val newDF = df.withColumn("starring", lit(1))

Repeat withColumn()

import org.apache.spark.sql.DataFrame

val booleanColumnNames = Array("fork", "has_issues", "has_projects", "has_downloads", "has_wiki", "has_pages")
val convertedRepoInfoDF = booleanColumnNames.foldLeft[DataFrame](cleanRepoInfoDF)(
  (accDF, columnName) => accDF.withColumn(s"clean_$columnName", col(columnName).cast("int"))
)

// or

val lowerableColumnNames = Array("description", "language", "topics")
val booleanColumnNames = Array("fork", "has_issues", "has_projects", "has_downloads", "has_wiki", "has_pages")
val convertedRepoInfoDF = (lowerableColumnNames ++ booleanColumnNames).foldLeft[DataFrame](cleanRepoInfoDF)((accDF, columnName) => {
  columnName match {
    case _ if lowerableColumnNames.contains(columnName) => 
      accDF.withColumn(s"clean_$columnName", lower(col(columnName)))
    case _ if booleanColumnNames.contains(columnName) => 
      accDF.withColumn(s"clean_$columnName", col(columnName).cast("int"))
  }
})

ref:
https://stackoverflow.com/questions/41400504/spark-scala-repeated-calls-to-withcolumn-using-the-same-function-on-multiple-c

Specify that a Row has any Nullable Column

val nullableColumnNames = Array("bio", "blog", "company", "email", "location", "name")

val df2 = df1.withColumn("has_null", when(nullableColumnNames.map(df1(_).isNull).reduce(_||_), true).otherwise(false))
// or
val df2 = df1.withColumn("has_null", when($"bio".isNull or
                                          $"blog".isNull or
                                          $"company".isNull or
                                          $"email".isNull or
                                          $"location".isNull or
                                          $"name".isNull, true).otherwise(false))

Combine Two Columns into an Array

import org.apache.spark.sql.functions._

fixRepoInfoDS
  .where("topics != ''")
  .withColumn("tags", struct("language", "topics"))
  .select("tags")
  .show(truncate=false)
// +----------------------------------------------------------------------+
// |tags                                                                  |
// +----------------------------------------------------------------------+
// |[Ruby,aasm,activerecord,mongoid,ruby,state-machine,transition]        |
// |[Ruby,captcha,rails,recaptcha,ruby,sinatra]                           |
// |[Python,commandline,gtd,python,sqlite,todo]                           |
// ...
// +----------------------------------------------------------------------+

Select Nested Column Directly

userRecommendationsDF
+----+-----------------------------------------------------------------+
|user|recommendations                                                  |
+----+-----------------------------------------------------------------+
|1   |[[2,0.9997897], [4,0.9988761], [1,0.9988487], [5,0.0]]           |
|3   |[[5,0.9984464], [1,2.9802322E-8], [2,0.0], [4,0.0]]              |
|2   |[[4,0.9921428], [2,0.10759391], [1,0.10749264], [5,1.4901161E-8]]|
+----+-----------------------------------------------------------------+

userRecommendationsDF.printSchema()
// root
// |-- user: integer (nullable = false)
// |-- recommendations: array (nullable = true)
// |    |-- element: struct (containsNull = true)
// |    |    |-- item: integer (nullable = true)
// |    |    |-- rating: float (nullable = true)

val userItemsDF = userRecommendationsDF.select($"user", $"recommendations.item")
// +----+------------+
// |user|        item|
// +----+------------+
// |   1|[2, 4, 1, 5]|
// |   3|[5, 1, 2, 4]|
// |   2|[4, 2, 1, 5]|
// +----+------------+

ref:
https://stackoverflow.com/questions/38413040/spark-sql-udf-with-complex-input-parameter

Flatten an Array Column

import org.apache.spark.sql.Row

val userRecommenderItemDF = alsModel.recommendForAllUsers(15)
  .flatMap((row: Row) => {
    val userID = row.getInt(0)
    val recommendations = row.getSeq[Row](1)
    recommendations.map {
      case Row(repoID: Int, score: Float) => {
        (userID, repoID, score, "als")
      }
    }
  })
  .toDF("user_id", "repo_id", "score", "source")

userRecommenderItemDF.show()
// +-------+-------+-------------+------+
// |user_id|repo_id|score        |source|
// +-------+-------+-------------+------+
// |2142   |48     |0.05021151   |als   |
// |2142   |118    |0.05021151   |als   |
// |2142   |68     |0.7791124    |als   |
// |2142   |98     |0.9939307    |als   |
// |2142   |28     |0.53719014   |als   |
// +-------+-------+-------------+------+

Define Conditional Columns

import org.apache.spark.sql.Column
import org.apache.spark.sql.functions._

val workingStatusProjection: Column = when($"telfs" >= 1 && $"telfs" < 3, "working").
                                      otherwise("not working").
                                      as("working")

val ageProjection: Column = when($"teage" >= 15 && $"teage" <= 22 , "young").
                            when($"teage" >= 23 && $"teage" <= 55 , "active").
                            otherwise("elder").
                            as("age")

val workProjection: Column = workColumns.reduce(_+_).divide(60).as("work_hours")

val new DF = df.select(workingStatusProjection, ageProjection, workProjection)
// +-----------+------+------------------+
// |    working|   age|        work_hours|
// +-----------+------+------------------+
// |    working| elder|               0.0|
// |    working|active|               0.0|
// |    working|active|               0.0|
// |not working|active|               2.0|
// |    working|active| 8.583333333333334|
// +-----------+------+------------------+

Create a Custom Transformation Function for any DataFrame

def withGreeting(df: DataFrame): DataFrame = {
  df.withColumn("greeting", lit("hello world"))
}

def withCat(name: String)(df: DataFrame): DataFrame = {
  df.withColumn("cat", lit(s"$name meow"))
}

val df = Seq(
  "funny",
  "person"
).toDF("something")

val weirdDf = df
  .transform(withGreeting)
  .transform(withCat("kitten"))
// +---------+-----------+-----------+
// |something|   greeting|        cat|
// +---------+-----------+-----------+
// |    funny|hello world|kitten meow|
// |   person|hello world|kitten meow|
// +---------+-----------+-----------+

ref:
https://medium.com/@mrpowers/chaining-custom-dataframe-transformations-in-spark-a39e315f903c

Combine Two Arrays from Two DataFrames

// or
val bothItemsRDD = userPredictedItemsDF.join(userActualItemsDF, Seq("user_id", "user_id"))
  .select(userPredictedItemsDF.col("items"), userActualItemsDF.col("items"))
  .rdd
  .map({
    case Row(userPredictedItems: Seq[Int], userActualItems: Seq[Int]) => {
      (userPredictedItems.slice(0, $(k)).toArray, userActualItems.slice(0, $(k)).toArray)
    }
  })

ref:
https://stackoverflow.com/questions/28166555/how-to-convert-row-of-a-scala-dataframe-into-case-class-most-efficiently

Handle Missing Values (NaN and Null)

NaN stands for "Not a Number", it's usually the result of a mathematical operation that doesn't make sense, e.g. 5/0.

val df1 = repoInfoDF.na.fill("")
val df2 = repoInfoDF.na.fill("", Seq("description", "homepage"))

ref:
https://stackoverflow.com/questions/33089781/spark-dataframe-handing-empty-string-in-onehotencoder
https://stackoverflow.com/questions/43882699/which-differences-there-are-between-null-and-nan-in-spark-how-to-deal-with

Calculate the Difference between Two Dates

import org.apache.spark.sql.functions._

df.withColumn("updated_at_days_since_today", datediff(current_date(), $"updated_at"))

ref:
https://databricks.com/blog/2015/09/16/apache-spark-1-5-dataframe-api-highlights.html

Create an User-Defined Function (UDF) which Accepts One Column

import org.apache.spark.sql.functions.udf

val df = Seq(
  (1, "Company Name Inc."),
  (2, "Company Name Co."), 
  (3, "Company Name ")
).toDF("id", "company")

val removeUninformativeWords = (text: String) => {
  text
    .toLowerCase()
    .replaceAll(", inc.", "")
    .replaceAll(" inc.", "")
    .replaceAll("-inc", "")
    .replaceAll(" co., ltd.", "")
    .replaceAll(" co.", "")
    .replaceAll(" ltd.", "")
    .replaceAll(".com", "")
    .replaceAll("@", "")
    .trim()
}
val removeUninformativeWordsUDF = udf(removeUninformativeWords)

val newDF = df.withColumn("fix_company", removeUninformativeWordsUDF($"company"))
newDF.show()

ref:
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-sql-udfs.html

Create an User-Defined Function (UDF) which Accepts Multiple Columns

When defining your UDFs, you must use Row for mapping StructType instead of any custom case classes.

import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.Row

userRecommendationsDF.printSchema()
// root
 // |-- user: integer (nullable = false)
 // |-- recommendations: array (nullable = true)
 // |    |-- element: struct (containsNull = true)
 // |    |    |-- item: integer (nullable = true)
// |    |    |-- rating: float (nullable = true)

val extractItemsUDF = udf((user: Int, recommendations: Seq[Row]) => {
  val items: Seq[Int] = recommendations.map(_.getInt(0))
  val ratings: Seq[Float] = recommendations.map(_.getFloat(1))
  items
})
userRecommendationsDF.withColumn("items", extractItemsUDF($"user", $"recommendations"))
// +----+-----------------------------------------------------------------+------------+
// |user|recommendations                                                  |items       |
// +----+-----------------------------------------------------------------+------------+
// |1   |[[2,0.9997897], [4,0.9988761], [1,0.9988487], [5,0.0]]           |[2, 4, 1, 5]|
// |3   |[[5,0.9984464], [1,2.9802322E-8], [2,0.0], [4,0.0]]              |[5, 1, 2, 4]|
// |2   |[[4,0.9921428], [2,0.10759391], [1,0.10749264], [5,1.4901161E-8]]|[4, 2, 1, 5]|
// +----+-----------------------------------------------------------------+------------+

ref:
https://stackoverflow.com/questions/32196207/derive-multiple-columns-from-a-single-column-in-a-spark-dataframe

The GenericRowWithSchema cannot be cast to XXX issue:

There is a strict mapping between Spark SQL data types and Scala types, such as IntegerType vs. Int, TimestampType vs. java.sql.Timestamp and StructType vs. org.apache.spark.sql.Row.

ref:
https://stackoverflow.com/questions/38413040/spark-sql-udf-with-complex-input-parameter
https://spark.apache.org/docs/latest/sql-programming-guide.html#data-types

Create an User-Defined Function (UDF) with Extra Parameters

import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions._
import scala.util.control.Breaks._

val df = spark.createDataFrame(Seq(
  ("Bob", 35, "Web Backend Developer"),
  ("Cathy", 24, "UX Designer"),
  ("Vic", 26, "PM"),
  ("Tom", 29, "Back end Engineer")
)).toDF("name", "age", "occupation")

// the return type of this UDF is Double
def containsAnyOfUDF(substrings: Array[String]): UserDefinedFunction = udf[Double, String]((text: String) => {
  var result = 0.0
  breakable {
    for (substring <- substrings) {
      if (text.contains(substring)) {
        result = 1.0
        break
      }
    }
  }
  result
})

val backends = Array("backend", "back end")
df.withColumn("knows_backend", containsAnyOfUDF(backends)(lower($"occupation"))))
// +-----+---+---------------------+-------------+
// |name |age|occupation           |knows_backend|
// +-----+---+---------------------+-------------+
// |Bob  |35 |Web Backend Developer|1.0          |
// |Cathy|24 |UX Designer          |0.0          |
// |Vic  |26 |PM                   |0.0          |
// |Tom  |29 |Back end Engineer    |1.0          |
// +-----+---+---------------------+-------------+

ref:
https://stackoverflow.com/questions/35546576/how-can-i-pass-extra-parameters-to-udfs-in-sparksql

Select Rows that Contain Certain String in a DataFrame

userInfoDF
  .where("company LIKE '%Inc%'")
  .orderBy($"company".desc)

Order By One of the Elements in a List Column

import org.apache.spark.ml.linalg.{Vector, Vectors}

val to_array = udf((v: Vector) => v.toDense.values)

resultTestDF
  .where("user_id = 652070")
  .orderBy(to_array($"probability").getItem(1).desc)
  .select("user_id", "repo_id", "starring", "prediction", "probability")
  .show(false)

Show Distinct Values

df.select($"company").distinct().orderBy($"company".desc)

import org.apache.spark.sql.functions.approx_count_distinct

imputedUserInfoDF.select(approx_count_distinct($"company")).show()
// 39581

ref:
https://databricks.com/blog/2016/05/19/approximate-algorithms-in-apache-spark-hyperloglog-and-quantiles.html

Group By then Aggregation

import org.apache.spark.sql.functions.count

val df = userInfoDF
  .groupBy($"company")
  .agg(count("user_id").alias("count"))
  .orderBy($"count".desc)
  .limit(1000)

Group By then Get First/Top n Items

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.rank

val topN = 10
val window = Window.partitionBy($"user_id").orderBy($"starred_at".desc)
val userLanguagesDF = repoInfoStarringDF
  .withColumn("rank", rank.over(window))
  .where($"rank" <= topN)
  .groupBy($"user_id")
  .agg(collect_list($"language").alias("languages"))
// +--------+-----------------------------------------------------------------+
// |user_id |languages                                                        |
// +--------+-----------------------------------------------------------------+
// |2142    |[JavaScript, Python, Python, Ruby, Go]                           |
// |59990   |[Python, JavaScript, Go, JavaScript, Go]                         |
// |101094  |[JavaScript, C++, Max, C, JavaScript]                            |
// |109622  |[PHP, PHP, PHP, PHP, Python]                                     |
// |201694  |[TypeScript, Python, Vim script, Vim script, Python]             |
// +--------+-----------------------------------------------------------------+

ref:
https://stackoverflow.com/questions/33655467/get-topn-of-all-groups-after-group-by-using-spark-dataframe
https://stackoverflow.com/questions/35918262/spark-topn-after-groupby

or

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.row_number

val df = spark.createDataFrame(Seq(
  (2, 1, 0, "2017-05-18 22:01:00.0"),
  (1, 1, 1, "2017-05-16 20:01:00.0"),
  (2, 5, 0, "2017-05-21 22:01:00.0"),
  (1, 2, 1, "2017-05-17 21:01:00.0"),
  (1, 4, 1, "2017-05-17 22:01:00.0"),
  (1, 7, 1, "2017-05-12 22:01:00.0"),
  (3, 1, 1, "2017-05-19 22:01:00.0"),
  (3, 2, 1, "2017-05-30 22:01:00.0"),
  (3, 5, 1, "2017-05-01 22:01:00.0"),
  (1, 6, 1, "2017-05-19 22:01:00.0")
)).toDF("user_id", "repo_id", "starring", "starred_at")

val windowSpec = Window.partitionBy($"user_id").orderBy($"starred_at".desc)
val userActualItemsDF = df
  .withColumn("row_number", row_number().over(windowSpec))
  .where($"row_number" <= 3)
// +-------+-------+--------+---------------------+----------+
// |user_id|repo_id|starring|starred_at           |row_number|
// +-------+-------+--------+---------------------+----------+
// |1      |6      |1       |2017-05-19 22:01:00.0|1         |
// |1      |4      |1       |2017-05-17 22:01:00.0|2         |
// |1      |2      |1       |2017-05-17 21:01:00.0|3         |
// |3      |2      |1       |2017-05-30 22:01:00.0|1         |
// |3      |1      |1       |2017-05-19 22:01:00.0|2         |
// |3      |5      |1       |2017-05-01 22:01:00.0|3         |
// |2      |5      |0       |2017-05-21 22:01:00.0|1         |
// |2      |1      |0       |2017-05-18 22:01:00.0|2         |
// +-------+-------+--------+---------------------+----------+

ref:
https://stackoverflow.com/questions/33878370/how-to-select-the-first-row-of-each-group
http://xinhstechblog.blogspot.tw/2016/04/spark-window-functions-for-dataframes.html

Group By then Concatenate Strings

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._

val userTopicsDF = repoInfoStarringDF
  .where($"topics" =!= "")
  .withColumn("rank", rank.over(Window.partitionBy($"user_id").orderBy($"starred_at".desc)))
  .where($"rank" <= 50)
  .groupBy($"user_id")
  .agg(concat_ws(",", collect_list($"topics")).alias("topics_preferences"))
// +--------+-------------------------------------------------------------------+
// | user_id|                                                 topics_preferences|
// +--------+-------------------------------------------------------------------+
// |    2142|go,golang,grpc,microservice,protobuf,consul,go,golang,load-balancer|
// |   59990|api,api-gateway,aws,aws-infrastructure,aws-lambda,deploy-tool      |
// |  101094|ableton,javascript,maxmsp,c,c89,gui,imgui,nuklear                  |
// |  109622|stripe,algolia,magento,magento-algoliasearch,php,search,aws        |
// +--------+-------------------------------------------------------------------+

ref:
https://community.hortonworks.com/questions/44886/dataframe-groupby-and-concat-non-empty-strings.html

Group By after Order By Maintains Order

val list = Seq(
  (2, 1, 0, "2017-05-18 22:01:00.0"),
  (1, 1, 1, "2017-05-16 20:01:00.0"),
  (2, 5, 0, "2017-05-21 22:01:00.0"),
  (1, 2, 1, "2017-05-17 21:01:00.0"),
  (1, 4, 1, "2017-05-17 22:01:00.0"),
  (3, 1, 1, "2017-05-19 22:01:00.0"),
  (3, 2, 1, "2017-05-30 22:01:00.0"),
  (3, 5, 1, "2017-05-01 22:01:00.0"),
  (1, 6, 1, "2017-05-19 22:01:00.0")
)
val df = list.toDF("user_id", "repo_id", "starring", "starred_at")

val userActualItemsDF = df
  .orderBy($"starred_at".desc)
  .groupBy($"user_id")
  .agg(collect_list($"repo_id").alias("items"))
// +-------+------------+
// |user_id|       items|
// +-------+------------+
// |      1|[6, 4, 2, 1]|
// |      3|   [2, 1, 5]|
// |      2|      [5, 1]|
// +-------+------------+

ref:
https://stackoverflow.com/questions/39505599/spark-dataframe-does-groupby-after-orderby-maintain-that-order

collect_list Multiple Columns

import org.apache.spark.sql.functions.{collect_list, struct}

predictionDF
// +----+----+------+----------+
// |user|item|rating|prediction|
// +----+----+------+----------+
// |   1|   1|    12| 0.9988487|
// |   3|   5|     8| 0.9984464|
// |   1|   4|     4|0.99887615|
// |   2|   4|     1| 0.9921428|
// |   1|   2|    90| 0.9997897|
// +----+----+------+----------+

val userRecommendationsDF = predictionDF
  .groupBy($"user")
  .agg(collect_list(struct($"item", $"prediction")).alias("recommendations"))
// +----+----------------------------------------------+
// |user|recommendations                               |
// +----+----------------------------------------------+
// |1   |[[1,0.9988487], [4,0.99887615], [2,0.9997897]]|
// |3   |[[5,0.9984464]]                               |
// |2   |[[4,0.9921428]]                               |
// +----+----------------------------------------------+

groupByKey() on Dataset

val keyValues = List(
  (3, "Me"), (1, "Thi"), (2, "Se"), (3, "ssa"), (1, "sIsA"), (3, "ge:"), (3, "-"), (2, "cre"), (2, "t")
)
val keyValuesDS = keyValues.toDS
val ds = keyValuesDS
  .groupByKey(P => P._1)
  .mapValues(p => p._2)
  .reduceGroups((acc, str) => acc + str)

ref:
https://www.coursera.org/learn/scala-spark-big-data/lecture/yrfPh/datasets

case class TimeUsageRow(
  working: String,
  sex: String,
  age: String,
  primaryNeeds: Double,
  work: Double,
  other: Double
)

val summaryDs = doShit()
// +-----------+------+------+------------------+------------------+------------------+
// |    working|   sex|   age|      primaryNeeds|              work|             other|
// +-----------+------+------+------------------+------------------+------------------+
// |    working|  male| elder|             15.25|               0.0|              8.75|
// |    working|female|active|13.833333333333334|               0.0|10.166666666666666|
// |    working|female|active|11.916666666666666|               0.0|12.083333333333334|
// |not working|female|active|13.083333333333334|               2.0| 8.916666666666666|
// |    working|  male|active|11.783333333333333| 8.583333333333334|3.6333333333333333|
// +-----------+------+------+------------------+------------------+------------------+

val finalDs = summaryDs
  .groupByKey((row: TimeUsageRow) => {
    (row.working, row.sex, row.age)
  })
  .agg(
    round(typed.avg[TimeUsageRow](_.primaryNeeds), 1).as(Encoders.DOUBLE),
    round(typed.avg[TimeUsageRow](_.work), 1).as(Encoders.DOUBLE),
    round(typed.avg[TimeUsageRow](_.other), 1).as(Encoders.DOUBLE)
  )
  .map({
    case ((working, sex, age), primaryNeeds, work, other) => {
      TimeUsageRow(working, sex, age, primaryNeeds, work, other)
    }
  })
  .orderBy("working", "sex", "age")
  .as[TimeUsageRow]
// +-----------+------+------+------------+----+-----+
// |    working|   sex|   age|primaryNeeds|work|other|
// +-----------+------+------+------------+----+-----+
// |not working|female|active|        12.4| 0.5| 10.8|
// |not working|female| elder|        10.9| 0.4| 12.4|
// |not working|female| young|        12.5| 0.2| 11.1|
// |not working|  male|active|        11.4| 0.9| 11.4|
// |not working|  male| elder|        10.7| 0.7| 12.3|
// +-----------+------+------+------------+----+-----+

ref:
https://stackoverflow.com/questions/39946210/spark-2-0-datasets-groupbykey-and-divide-operation-and-type-safety

Aggregator

val myAgg = new Aggregator[IN, BUF, OUT] {
  def zero: BUF = ??? // the initial value
  def reduce(b: BUF, a: IN): BUF = ??? // add an element to the running total
  def merge(b1: BUF, b2: BUF): BUF = ??? // merge itermediate values
  def finish(b: BUF): OUT = ??? // return the final result
  override def bufferEncoder: Encoder[BUF] = ???
  override def outputEncoder: Encoder[OUT] = ???
}.toColumn

ref:
https://www.coursera.org/learn/scala-spark-big-data/lecture/yrfPh/datasets

Join Two DataFrames

val starringDF = spark.createDataFrame(Seq(
    (652070, 21289110, 1),
    (652070, 4164482, 1),
    (652070, 44838949, 0),
    (1912583, 4164482, 0)
)).toDF("user_id", "repo_id", "starring")

val repoDF = spark.createDataFrame(Seq(
    (21289110, "awesome-python", "Python", 37336),
    (4164482, "django", "Python", 27451),
    (44838949, "swift", "C++", 39840)
)).toDF("id", "repo_name", "repo_language", "stargazers_count")

val fullDF = starringDF.join(repoDF, starringDF.col("repo_id") === repoDF.col("id"))
// +-------+--------+--------+--------+--------------+-------------+----------------+
// |user_id| repo_id|starring|      id|     repo_name|repo_language|stargazers_count|
// +-------+--------+--------+--------+--------------+-------------+----------------+
// | 652070|21289110|       1|21289110|awesome-python|       Python|           37336|
// | 652070| 4164482|       1| 4164482|        django|       Python|           27451|
// | 652070|44838949|       0|44838949|         swift|          C++|           39840|
// |1912583| 4164482|       0| 4164482|        django|       Python|           27451|
// +-------+--------+--------+--------+--------------+-------------+----------------+

ref:
https://docs.databricks.com/spark/latest/faq/join-two-dataframes-duplicated-column.html

Broadcast Join

ref:
https://docs.cloud.databricks.com/docs/latest/databricks_guide/04%20SQL%2C%20DataFrames%20%26%20Datasets/05%20BroadcastHashJoin%20-%20scala.html

Play with GitHub Archive Dataset on BigQuery

Play with GitHub Archive Dataset on BigQuery

Google BigQuery is a web service that lets you do interactive analysis of very massive datasets - analyzing billions of rows in seconds.

ref:
https://www.githubarchive.org/#bigquery
https://bigquery.cloud.google.com/table/githubarchive:month.201612

See also:
http://ghtorrent.org/

Show repository informations (1)

WITH repo_info AS (
  SELECT repo.id AS id, repo.name AS name, JSON_EXTRACT_SCALAR(payload, '$.pull_request.base.repo.description') AS description
  FROM `githubarchive.month.2017*`
  -- FROM `githubarchive.year.2016`
  -- FROM `githubarchive.year.*`
  WHERE type = "PullRequestEvent"
)

SELECT repo_info.name, ANY_VALUE(repo_info.description) AS description
FROM repo_info
WHERE
  repo_info.description IS NOT NULL AND
  repo_info.description != ""
GROUP BY repo_info.name
ORDER BY repo_info.name

ref:
https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#json-functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#any_value

Show repository informations (2)

WITH repo_info AS (
  SELECT repo.id AS id, repo.name AS name, JSON_EXTRACT_SCALAR(payload, '$.description') AS description
  FROM `githubarchive.month.201708`
  WHERE type = "CreateEvent"
)

SELECT repo_info.name, ANY_VALUE(repo_info.description) AS description
FROM repo_info
WHERE
  repo_info.description IS NOT NULL AND
  repo_info.description != ""
GROUP BY repo_info.name
ORDER BY repo_info.name

Show repository informations (3)

SELECT name, description
FROM `ghtorrent-bq.ght_2017_04_01.projects`
WHERE
  forked_from IS NULL AND
  description IS NOT NULL AND
  description != ""

Show starred repositories by a specific user

You must use WatchEvent for starring a repo:
https://developer.github.com/v3/activity/events/types/#watchevent

SELECT repo.name, created_at
FROM TABLE_QUERY([githubarchive:month], 'LEFT(table_ID,4) IN ("2017","2016","2015")') 
WHERE type = "WatchEvent" AND actor.login = 'vinta'
GROUP BY repo.name, created_at
ORDER BY created_at DESC

Show starred repositories per user who has 10+ starred repositories

WITH stars AS (
     SELECT DISTINCT actor.login AS user, repo.name AS repo
     FROM `githubarchive.month.2017*`
     WHERE type="WatchEvent"
),
repositories_stars AS (
     SELECT repo, COUNT(*) as c FROM stars GROUP BY repo
     ORDER BY c DESC
     LIMIT 1000
),
users_stars AS (
    SELECT user, COUNT(*) as c FROM  stars
    WHERE repo IN (SELECT repo FROM repositories_stars)
    GROUP BY user
    HAVING c >= 10
    LIMIT 10000
)
SELECT user, repo FROM stars
WHERE repo IN (SELECT repo FROM repositories_stars)
AND user IN (SELECT user FROM users_stars)

ref:
https://gist.github.com/jbochi/2e8ddcc5939e70e5368326aa034a144e