AWS Lambda Cookbook

AWS Lambda Cookbook

AWS Lambda is an event-driven service that you can upload your code to it and run those code on-demand without having your own servers.

ref:
http://aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/latest/dg/limits.html

API Gateway 就是 URL routing
Lambda 則是那些 route (endpoint) 對應的 handler
如果你是用 event 或 schedule 的方式呼叫 Lambda function 的話
可以不用 API Gateway

AWS Lambda 有兩種 invocation type
一是 RequestResponse,同步(例如綁定 API Gateway 和你在 Lambda Management Console 操作的時候)
二是 Event,非同步

Runtimes

AWS Lambda supports the following runtime versions:

  • nodejs (Node v0.10)
  • nodejs4.3
  • java
  • python

ref:
http://docs.aws.amazon.com/lambda/latest/dg/current-supported-versions.html

Node.js

const aws = require('aws-sdk');

exports.handle = (event, context, callback) => {
  doYourShit();
  callback(null, 'DONE');
};

每個 Lambda function 會接收三個參數 eventcontextcallback

event 是從外部的 input
可能是來自 S3 object event、DynamoDB stream 或是由 API Gateway POST 進來的 JSON payload

context 則會包含當前這個 Lambda fuction 的一些 metadata
例如 context.getRemainingTimeInMillis()

callback 參數只有 Node.js runtime v4.3 才支援
v0.10 的話得用 context.succeed()context.fail()context.done()
不過誰他媽還在用 Node.js v0.10

ref:
http://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html
http://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-context.html
http://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

Calling another Lambda function in a Lambda function.

要注意的是
你的 Lambda function 的 role 得要有 invoke 其他 Lambda function 的權限才行

const util = require('util');

const aws = require('aws-sdk');

const params = {
  FunctionName: 'LambdaBaku_syncIssue',
  InvocationType: 'Event', // means asynchronous execution
  Payload: JSON.stringify({ issue_number: curatedIssue.number }),
};

lambda.invoke(params, (err, data) => {
  if (err) {
    console.log('FAIL', params);
    console.log(util.inspect(err));
  } else {
    console.log(data);
  }
});

ref:
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Lambda.html
http://stackoverflow.com/questions/31714788/can-an-aws-lambda-function-call-another

完整的程式碼放在 GitHub 上
https://github.com/CodeTengu/lambdabaku

Users and Roles

如果你是用 apex 來管理 Lambda functions 的話
確保你用的 AWS credential (User) 擁有 AWSLambdaFullAccessAWSLambdaRole 這兩個 permissions

以 project 為單位建立 Role 即可
例如 lambdabaku_role
你可以在 IAM Management Console 找到那些你建立的 roles
基本上用 Basic execution role 就夠了
反正之後可以隨時修改 Role 的 permission / policy
Lambda function 屬於哪個 VPC 是額外指定的
跟 Role 沒有關係
也就是說你用 Basic execution role 還是可以支援 VPC

如果想在 Lambda function 裡存取 DynamoDB
要記得在 Role 裡新增對應的設定

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "",
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": "*"
        },
        {
            "Sid": "Stmt1428341300017",
            "Effect": "Allow",
            "Action": [
                "dynamodb:*"
            ],
            "Resource": [
                "arn:aws:dynamodb:ap-northeast-1:004615714446:table/CodeTengu_Preference",
                "arn:aws:dynamodb:ap-northeast-1:004615714446:table/CodeTengu_WeeklyIssue",
                "arn:aws:dynamodb:ap-northeast-1:004615714446:table/CodeTengu_WeeklyPost"
            ]
        }
    ]
}

Scheduled Events

ref:
http://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html

API Gateway

單純一點的話
Security 可以選 Open with access key
然後到 API Gateway 介面的 API Keys 底下新增一組 access key
然後分配一個 API stage 給它

使用的時候在 HTTP header 加上 x-api-key: YOUR_API_KEY 即可

ref:
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-api-keys.html

Related Projects

ref:
https://github.com/serverless/serverless
https://github.com/apex/apex
https://github.com/claudiajs/claudia
https://github.com/garnaat/kappa
https://github.com/Miserlou/Zappa
https://github.com/nficano/python-lambda

淺析 serverless 架構與實作
http://abalone0204.github.io/2016/05/22/serverless-simple-crud/

Deploy Lambda Functions via apex

$ curl https://raw.githubusercontent.com/apex/apex/master/install.sh | sh

$ apex deploy
$ apex invoke syncPublishedIssues --logs
$ echo -n '{"issue_number": 43}' | apex invoke syncIssue --logs

ref:
https://github.com/apex/apex
http://apex.run/

AWS DynamoDB Notes

AWS DynamoDB Notes

AWS DynamoDB is a fully managed key-value store (also document store) NoSQL database as a service provided by Amazon Web Services. Its pricing model is that you only pay for the throughput (read and write) you use instead of the storage usage and the running hours of database instances.

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://www.slideshare.net/AmazonWebServices/design-patterns-using-amazon-dynamodb

Glossary

DynamoDB is schema-less.

  • table: a table is a collection of items.
  • item: an item is a collection of attributes (key-value pairs).
  • attribute: attribute is similar to fields or columns in other databases.
  • primary key: one or two attributes that can uniquely identify every item in a table.
    • partition key (aka hash key): a simple primary key, composed of one attribute.
    • partition key and sort key (aka range key): a composite primary key, composed of two attributes.

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html

Global Secondary Index (GSI)

secondary index 指的是除了 primary key 之外的第二組 key
可以有很多組 secondary index
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

GSI 可以用在是 partition key 或 partition + sort key 的 table
GSI 跟 primary key 一樣可以 simple 或是 composite 的
GSI 可以隨時增減

如果你不需要 strong consistency 或個別 partition 的資料量大於 10GB
那就用 GSI

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
http://iamgarlic.blogspot.tw/2015/01/amazon-dynamodb-global-secondary-index.html

Local Secondary Index (LSI)

LSI 只能用在是 partition + sort key 的 table
LSI 必須用原本的 partition key 搭配其他 attribute 做為新的 partition + sort key(LSI 只會是 composite 的)
LSI 只能在建立 table 的時候定義

ref:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
http://iamgarlic.blogspot.tw/2015/01/amazon-dynamodb-local-secondary-index.html

Query and Scan

能不用 scan 就不用
畢竟這個操作就是去掃 table 裡的所有 item

primary key 和 local secondary index 只能在建立 table 時指定
一旦建立就不能改了
但是 global secondary index 就沒有這個限制

如果是用 partition + sork key 當 primary key
get 的時候要同時給 partition key 和 sort key
query 的時候可以只給 partition key 而 sort key 可給可不給(但是 partition key 一定要給)

無論是當 primary key、GSI 或 LSI
只要是 partition key 的 attribute 一律只能使用 = 來 query
該 attribute 沒有 rich query 的能力(就是 >, <, between, contains 那些條件)
sort key 才會有 rich query

Best Practices
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html

Choosing a Partition Key
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForTables.html

Querying DynamoDB by date
http://stackoverflow.com/questions/14836600/querying-dynamodb-by-date

Pick an item randomly
http://stackoverflow.com/questions/10666364/aws-dynamodb-pick-a-record-item-randomly

ref:
https://www.uplift.agency/blog/posts/2016/03/clearcare-dynamodb
https://medium.com/building-timehop/one-year-of-dynamodb-at-timehop-f761d9fe5fa1#.3g97b3lqy

Commands

DynamoDB is schema-less, so that you can only define keys you need for specifying primary key or local secondary index when creating table.

# 可以用 project name 作為 table name 的 prefix
# 之後可以隨時修改 read / write capacity units
$ aws dynamodb create-table \
--table-name CodeTengu_Preference \
--attribute-definitions AttributeName=name,AttributeType=S \
--key-schema AttributeName=name,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

$ aws dynamodb create-table \
--table-name CodeTengu_WeeklyIssue \
--attribute-definitions AttributeName=number,AttributeType=N AttributeName=publication,AttributeType=S AttributeName=publishedAt,AttributeType=N \
--key-schema AttributeName=number,KeyType=HASH \
--global-secondary-indexes IndexName=publication_published_at,KeySchema='[{AttributeName=publication,KeyType=HASH},{AttributeName=publishedAt,KeyType=RANGE}]',Projection='{ProjectionType=ALL}',ProvisionedThroughput='{ReadCapacityUnits=5,WriteCapacityUnits=5}' \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

$ aws dynamodb create-table \
--table-name CodeTengu_WeeklyPost \
--attribute-definitions AttributeName=issueNumber,AttributeType=N AttributeName=id,AttributeType=N  AttributeName=categoryCode,AttributeType=S \
--key-schema AttributeName=issueNumber,KeyType=HASH AttributeName=id,KeyType=RANGE \
--global-secondary-indexes IndexName=categoryCode_id,KeySchema='[{AttributeName=categoryCode,KeyType=HASH},{AttributeName=id,KeyType=RANGE}]',Projection='{ProjectionType=ALL}',ProvisionedThroughput='{ReadCapacityUnits=5,WriteCapacityUnits=5}' \
--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

ref:
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/create-table.html
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/update-table.html

$ aws dynamodb put-item \
--table-name CodeTengu_Preference \
--item file://fixtures/curated_api_config.json \
--return-consumed-capacity TOTAL

# fixtures/curated_api_config.json
{
  "name": { "S": "curated_api_config" },
  "apiKey": { "S": "xxx" }
}

ref:
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/put-item.html

$ aws dynamodb get-item \
--table-name CodeTengu_WeeklyIssue \
--key '{"number": {"N": "42"}}'

ref:
http://docs.aws.amazon.com/cli/latest/reference/dynamodb/get-item.html

Usage

你應該用 AWS.DynamoDB.DocumentClient
而不是直接用 AWS.DynamoDB

const AWS = require('aws-sdk');

const dynamodb = new AWS.DynamoDB({ apiVersion: '2012-08-10', region: 'ap-northeast-1' });
const dynamodbClient = new AWS.DynamoDB.DocumentClient({ service: dynamodb });

const params = {
  RequestItems: {
    CodeTengu_Preference: {
      Keys: [
        { name: 'xxx' },
      ],
    },
  },
};

dynamodbClient.batchGet(params, (err, data) => {
  if (err) {
    console.log('fail');
    console.log(err);
  } else {
    console.log('success');
    console.log(data);
  }
});

ref:
http://aws.amazon.com/sdk-for-node-js/
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html

完整的程式碼放在 GitHub 上
https://github.com/CodeTengu/lambdabaku

awscli: Command-line Interface for Amazon Web Services

awscli: Command-line Interface for Amazon Web Services

awscli is the official command-line interface for all Amazon Web Services (AWS).

ref:
https://github.com/aws/aws-cli

Configuration

$ pip install awscli

$ aws configure

ref:
https://docs.aws.amazon.com/cli/latest/index.html

S3

Download A Folder

$ aws s3 sync \
s3://files.vinta.ws/static/images/stickers/ \
.

ref:
https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects

Rename A Folder

$ aws s3 cp \
s3://files.vinta.ws/static/images/stickers_BACKUP/ \
s3://files.vinta.ws/static/images/stickers/ \
--recursive

ref:
https://docs.aws.amazon.com/cli/latest/reference/s3/cp.html

Make A Folder Public Read

$ aws s3 sync \
s3://files.vinta.ws/static/ \
s3://files.vinta.ws/static/ \
--grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers

Upload Files

# also make them public read
$ aws s3 cp \
. \
s3://files.vinta.ws/static/images/stickers/ \
--recursive \
--grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers

$ aws s3 cp \
db.sqlite3 \
s3://files.albedo.one/

$ aws s3 sync \
./ \
s3://files.albedo.one/ \
--recursive --exclude "*" --include "*.pickle"

Copy Files Between S3 Buckets

$ aws s3 sync s3://your_bucket_1/media s3://your_bucket_2/media \
--acl "public-read" \
--exclude "track_audio/*"

Remove Files

$ aws s3 rm s3://your_bucket_1/media/track_audio --recursive

ref:
https://docs.aws.amazon.com/cli/latest/reference/s3/rm.html

Tools for Profiling your Python Projects

Tools for Profiling your Python Projects

The first aim of profiling is to test a representative system to identify what's slow, using too much RAM, causing too much disk I/O or network I/O. You should keep in mind that profiling typically adds an overhead to your code.

In this post, I will introduce tools you could use to profile your Python or Django projects, including: timer, pycallgraph, cProfile, line-profiler, memory-profiler.

ref:
https://stackoverflow.com/questions/582336/how-can-you-profile-a-script
https://www.airpair.com/python/posts/optimizing-python-code

timer

The simplest way to profile a piece of code.

ref:
https://docs.python.org/3/library/timeit.html

pycallgraph

pycallgraph is a Python module that creates call graph visualizations for Python applications.

ref:
https://pycallgraph.readthedocs.org/en/latest/

$ sudo apt-get install graphviz
$ pip install pycallgraph
# in your_app/middlewares.py
from pycallgraph import Config
from pycallgraph import PyCallGraph
from pycallgraph.globbing_filter import GlobbingFilter
from pycallgraph.output import GraphvizOutput
import time

class PyCallGraphMiddleware(object):

    def process_view(self, request, callback, callback_args, callback_kwargs):
        if 'graph' in request.GET:
            config = Config()
            config.trace_filter = GlobbingFilter(include=['rest_framework.*', 'api.*', 'music.*'])
            graphviz = GraphvizOutput(output_file='pycallgraph-{}.png'.format(time.time()))
            pycallgraph = PyCallGraph(output=graphviz, config=config)
            pycallgraph.start()

            self.pycallgraph = pycallgraph

    def process_response(self, request, response):
        if 'graph' in request.GET:
            self.pycallgraph.done()

        return response
# in settings.py
MIDDLEWARE_CLASSES = (
    'your_app.middlewares.PyCallGraphMiddleware',
    ...
)
$ python manage.py runserver 0.0.0.0:8000
$ open http://127.0.0.1:8000/your_endpoint/?graph=true

cProfile

cProfile is a tool in Python's standard library to understand which functions in your code take the longest to run. It will give you a high-level view of the performance problem so you can direct your attention to the critical functions.

ref:
http://igor.kupczynski.info/2015/01/16/profiling-python-scripts.html
https://ymichael.com/2014/03/08/profiling-python-with-cprofile.html

$ python -m cProfile manage.py test member
$ python -m cProfile -o my-profile-data.out manage.py test --failtest
$ python -m cProfile -o my-profile-data.out manage.py runserver 0.0.0.0:8000

$ pip install cprofilev
$ cprofilev -f my-profile-data.out -a 0.0.0.0 -p 4000
$ open http://127.0.0.1:4000

cProfile with django-cprofile-middleware

$ pip install django-cprofile-middleware
# in settings.py
MIDDLEWARE_CLASSES = (
    ...
    'django_cprofile_middleware.middleware.ProfilerMiddleware',
)

Open any url with a ?prof suffix to do the profiling, for instance, http://localhost:8000/foo/?prof

ref:
https://github.com/omarish/django-cprofile-middleware

cProfile with django-extension and kcachegrind

kcachegrind is a profiling data visualization tool, used to determine the most time consuming execution parts of a program.

ref:
http://django-extensions.readthedocs.org/en/latest/runprofileserver.html

$ pip install django-extensions
# in settings.py
INSTALLED_APPS += (
    'django_extensions',
)
$ mkdir -p my-profile-data

$ python manage.py runprofileserver \
--noreload \
--nomedia \
--nostatic \
--kcachegrind \
--prof-path=my-profile-data \
0.0.0.0:8000

$ brew install qcachegrind --with-graphviz
$ qcachegrind my-profile-data/root.003563ms.1441992439.prof
# or
$ sudo apt-get install kcachegrind
$ kcachegrind my-profile-data/root.003563ms.1441992439.prof

cProfile with django-debug-toolbar

You're only able to use django-debug-toolbar if your view returns HTML, it needs a place to inject the debug panels into your DOM on the webpage.

ref:
https://github.com/django-debug-toolbar/django-debug-toolbar

$ pip install django-debug-toolbar
# in settiangs.py
INSTALLED_APPS += (
    'debug_toolbar',
)

DEBUG_TOOLBAR_PANELS = [
    ...
    'debug_toolbar.panels.profiling.ProfilingPanel',
    ...
]

line-profiler

line-profiler is a module for doing line-by-line profiling of functions. One of my favorite tools.

ref:
https://github.com/rkern/line_profiler

$ pip install line-profiler
# in your_app/views.py
def do_line_profiler(view=None, extra_view=None):
    import line_profiler

    def wrapper(view):
        def wrapped(*args, **kwargs):
            prof = line_profiler.LineProfiler()
            prof.add_function(view)
            if extra_view:
                [prof.add_function(v) for v in extra_view]
            with prof:
                resp = view(*args, **kwargs)
            prof.print_stats()
            return resp

        return wrapped

    if view:
        return wrapper(view)

    return wrapper

@do_line_profiler
def your_view(request):
    pass

ref:
https://djangosnippets.org/snippets/10483/

There is a pure Python alternative: pprofile.
https://github.com/vpelletier/pprofile

line-profiler with django-devserver

ref:
https://github.com/dcramer/django-devserver

$ pip install git+git://github.com/dcramer/django-devserver#egg=django-devserver

in settings.py

INSTALLED_APPS += (
    'devserver',
)

DEVSERVER_MODULES = (
    ...
    'devserver.modules.profile.LineProfilerModule',
    ...
)

DEVSERVER_AUTO_PROFILE = False

in your_app/views.py

from devserver.modules.profile import devserver_profile

@devserver_profile()
def your_view(request):
    pass

line-profiler with django-debug-toolbar-line-profiler

ref:
http://django-debug-toolbar.readthedocs.org/en/latest/
https://github.com/dmclain/django-debug-toolbar-line-profiler

$ pip install django-debug-toolbar django-debug-toolbar-line-profiler
# in settings.py
INSTALLED_APPS += (
    'debug_toolbar',
    'debug_toolbar_line_profiler',
)

DEBUG_TOOLBAR_PANELS = [
    ...
    'debug_toolbar_line_profiler.panel.ProfilingPanel',
    ...
]

memory-profiler

This is a Python module for monitoring memory consumption of a process as well as line-by-line analysis of memory consumption for Python programs.

ref:
https://pypi.python.org/pypi/memory_profiler

$ pip install memory-profiler psutil
# in your_app/views.py
from memory_profiler import profile

@profile(precision=4)
def your_view(request):
    pass

There are other options:
http://stackoverflow.com/questions/110259/which-python-memory-profiler-is-recommended

dogslow

ref:
https://bitbucket.org/evzijst/dogslow

django-slow-tests

ref:
https://github.com/realpython/django-slow-tests

django-debug-toolbar: The Debugging Toolkit for Django

django-debug-toolbar: The Debugging Toolkit for Django

django-debug-toolbar is a tool sets to display various debug information about the current request and response in Django.

ref:
https://github.com/django-debug-toolbar/django-debug-toolbar

Install

$ pip install \
  django-debug-toolbar \
  django-debug-toolbar-line-profiler \
  django-debug-toolbar-template-profiler \
  django-debug-toolbar-template-timings \
  django-debug-panel \
  memcache-toolbar \
  pympler \
  git+https://github.com/scuml/debug-toolbar-mail

ref:
https://github.com/dmclain/django-debug-toolbar-line-profiler
https://github.com/node13h/django-debug-toolbar-template-profiler
https://github.com/orf/django-debug-toolbar-template-timings
https://github.com/recamshak/django-debug-panel
https://github.com/ross/memcache-debug-panel
https://pythonhosted.org/Pympler/django.html
https://github.com/scuml/debug-toolbar-mail

Python 3
https://github.com/lerela/django-debug-toolbar-line-profile

Configuration

in urls.py

from django.conf import settings
from django.conf.urls import include, url

if settings.DEBUG:
    import debug_toolbar
    urlpatterns = [
        url(r'^__debug__/', include(debug_toolbar.urls)),
    ] + urlpatterns

in settings.py

INSTALLED_APPS += (
    'debug_toolbar',
    # 'debug_toolbar_line_profiler',
    # 'memcache_toolbar',
    # 'pympler',
    # 'template_profiler_panel',
    # 'template_timings_panel',
)
DEBUG_TOOLBAR_PANELS = [
    # 'debug_toolbar.panels.versions.VersionsPanel',
    # 'debug_toolbar.panels.timer.TimerPanel',
    # 'debug_toolbar.panels.settings.SettingsPanel',
    # 'debug_toolbar.panels.headers.HeadersPanel',
    # 'debug_toolbar.panels.request.RequestPanel',
    'debug_toolbar.panels.sql.SQLPanel',
    # 'debug_toolbar.panels.staticfiles.StaticFilesPanel',
    # 'debug_toolbar.panels.templates.TemplatesPanel',
    # 'template_timings_panel.panels.TemplateTimings.TemplateTimings',
    # 'template_profiler_panel.panels.template.TemplateProfilerPanel'
    # 'debug_toolbar.panels.cache.CachePanel',
    # 'memcache_toolbar.panels.memcache.MemcachePanel',
    # 'debug_toolbar.panels.profiling.ProfilingPanel',
    # 'debug_toolbar_line_profiler.panel.ProfilingPanel',
    # 'pympler.panels.MemoryPanel',
    # 'debug_toolbar.panels.signals.SignalsPanel',
    # 'debug_toolbar.panels.logging.LoggingPanel',
    # 'debug_toolbar.panels.redirects.RedirectsPanel',
]

if 'debug_toolbar' in INSTALLED_APPS:
    MIDDLEWARE_CLASSES = list(MIDDLEWARE_CLASSES)
    MIDDLEWARE_CLASSES += [
        'debug_toolbar.middleware.DebugToolbarMiddleware',
    ]

def show_toolbar(request):
    return True

DEBUG_TOOLBAR_CONFIG = {
    'SHOW_TOOLBAR_CALLBACK': show_toolbar,
}

INTERNAL_IPS = (
    '127.0.0.1',
)

ref:
http://django-debug-toolbar.readthedocs.org/en/latest/configuration.html
http://django-debug-toolbar.readthedocs.org/en/latest/panels.html

要確保沒有在 MIDDLEWARE_CLASSES 裡啟用以下的 middlewares:

  • 'django.middleware.gzip.GZipMiddleware'
  • 'django.middleware.http.ConditionalGetMiddleware'

ref:
http://django-debug-toolbar.readthedocs.io/en/stable/installation.html#automatic-setup